Well, we are trying to find the following integral:
$$\mathcal{I}_\text{n}\left(\text{k}\right):=\int_0^\infty\frac{\sin\left(\text{n}x\right)}{x^\text{k}}\space\text{d}x\tag1$$
Using the 'evaluating integrals over the positive real axis' property of the Laplace transform, we can write:
$$\mathcal{I}_\text{n}\left(\text{k}\right)=\int_0^\infty\mathscr{L}_x\left[\sin\left(\text{n}x\right)\right]_{\left(\sigma\right)}\cdot\mathscr{L}_x^{-1}\left[\frac{1}{x^\text{k}}\right]_{\left(\sigma\right)}\space\text{d}\sigma\tag2$$
Which gives:
$$\mathcal{I}_\text{n}\left(\text{k}\right)=\int_0^\infty\frac{\text{n}}{\text{n}^2+\sigma^2}\cdot\frac{\sigma^{\text{k}-1}}{\Gamma\left(\text{k}\right)}\space\text{d}\sigma=\frac{\text{n}}{\Gamma\left(\text{k}\right)}\int_0^\infty\frac{\sigma^{\text{k}-1}}{\text{n}^2+\sigma^2}\space\text{d}\sigma\tag3$$
Using this answer, we can see that:
$$\mathcal{I}_\text{n}\left(\text{k}\right)=\frac{\pi\text{n}^{\text{k}-1}}{2\Gamma\left(\text{k}\right)}\cdot\csc\left(\frac{\text{k}\pi}{2}\right)\tag4$$
So using $\text{n}=t$ and $\text{k}=\frac{1}{2}$, we get:
$$\mathcal{I}_t\left(\frac{1}{2}\right)=\frac{\pi t^{\frac{1}{2}-1}}{2\Gamma\left(\frac{1}{2}\right)}\cdot\csc\left(\frac{1}{2}\cdot\frac{\pi}{2}\right)=\frac{1}{\sqrt{t}}\cdot\frac{\sqrt{\pi}}{\sqrt{2}}=\sqrt{\frac{\pi}{2t}}\tag5$$
$$\frac{x}{\sqrt{x}(s^2 + x^2)} = \frac{\sqrt{x}}{s^2 + x^2} = \frac{y}{\tilde{s}^4 + y^4} $$
where $y:= \sqrt{x}$ and $\tilde{s} = \sqrt{s}$. With that, does this table help you: http://eqworld.ipmnet.ru/en/auxiliary/inttrans/LapInv2.pdf ? I think only entry 18 might be relevant, and while it would be tedious to apply, it seems potentially tractable. https://math.libretexts.org/Courses/Monroe_Community_College/MTH_225_Differential_Equations/8%3A_Laplace_Transforms/8.2%3A_The_Inverse_Laplace_Transform
– hasManyStupidQuestions Feb 15 '22 at 16:28