Let $ds^2 = \frac{dx^2+dy^2}{y^2}$ for $y>0$. i.e., Poincare half plane model.
I want to derive the distance between two points given by the wikipedia \begin{align} \operatorname{dist}(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) = \operatorname{arcosh} \left( 1 + \frac{(x_2-x_1)^2+(y_2-y_1)^2}{2y_1y_2} \right) \end{align} There are some posts in stackexchange like
Going from Metric to Distance Function in the Poincaré Half Plane
So my trial is solving geodesic equations explicitly.
\begin{align} \frac{d^2 x^\mu}{ds^2} + \Gamma^{\mu}{}_{\nu\rho} \frac{dx^\nu}{ds} \frac{dx^\rho}{ds} =0 \end{align}
The metric is given by
\begin{align} g=(g_{ij}) = \begin{pmatrix} y^{-2} & 0 \\ 0 & y^{-2} \end{pmatrix} \end{align}
and the non-trivial Christoffel symbol reads \begin{equation} \Gamma^1_{12}=\Gamma^1_{21}=-\frac{1}{y},\\ \Gamma^2_{12}=\Gamma^2_{21}=0,\\ \Gamma^1_{11}=\Gamma^1_{22}=0,\\ \Gamma^2_{11}=\frac{1}{y},\\ \Gamma^2_{22}=-\frac{1}{y}. \end{equation} Then the geodeisc equation reads \begin{align} &\frac{d^2x}{ds^2} - \frac{2}{y} \frac{dx}{ds} \frac{dy}{ds}=0 \\ &\frac{d^2y}{ds^2} + \frac{1}{y} \left( \frac{dx}{ds}\right)^2 - \frac{1}{y} \left(\frac{dy}{ds}\right)^2 =0 \end{align} I am trying to solve this with mathematica but fails. Nonetheless, for me solving this geodesic equation does not produce the distance formula...
Assuming $\frac{dx}{ds}\neq 0$, one get further and obtains
\begin{align} \frac{d}{ds} \left( y \frac{dy}{ds} \left(\frac{dx}{ds}\right)^{-1} + x \right) =0 \end{align} ...