Every function $f$ with domain in $\mathbb{R}$ can be written
$$f=E+O$$
where $E$ is an even function and $O$ is an odd function.
Proof
Assume $f(x) = E(x) + O(x)$.
Then
$$f(-x)=E(-x) + O(-x)=E(x)-O(x)$$
Therefore, given a function $f$,
$$f(x) = E(x) + O(x)$$ $$f(-x)=E(x)-O(x)$$
represent a system of two equations in two unknowns.
We can solve for
$$E(x) = \frac{f(x) + f(-x)}{2}$$
$$O(x) = \frac{f(x) - f(-x)}{2}$$
This concludes the proof.
Now consider a function
$$f(x) = \begin{cases} 0\text{ if } x < 0 \\ x\text{ if } x \geq 0 \end{cases}$$
What do $E(x)$ and $O(x)$ look like?
$$E(x) = \begin{cases} \frac{0+x}{2}=\frac{x}{2}\text{ if } x<0 \\ \frac{x+0}{2}=\frac{x}{2}\text{ if } x \geq 0 \end{cases}$$
Isn't the function $E(x)=\frac{x}{2}$ odd?
Similarly, we reach
$$O(x) = \begin{cases} \frac{0-x}{2}=-\frac{x}{2}\text{ if } x<0 \\ \frac{x-0}{2}=\frac{x}{2}\text{ if } x \geq 0 \end{cases}$$
Isn't $O(x)$ even?
I must be missing something very silly here.