I want to calculate integral $$\int_\mathbb{R} \frac{\cos(x)}{(x^2 + 4)^2}$$
using residue calculus. To do so, I'm going to define $f(z) = \frac{\cos(z)}{(z^2 + 4)^2} = \frac{\cos(z)}{(z-2i)^2(z+2i)^2}$
It has two polars with rank $2$ ($2i$ and $-2i$).
Let's calculate residue:
$$\textrm{res}_{2i}f(z) = \lim_{z \rightarrow 2i} - \frac{2\cos(z) + (z + 2i)\sin(z)}{(z + 2i)^3} = -\frac{2\cos(2i) + 4i\sin(2i)}{(4i)^3}$$
Analogically:
$$\textrm{res}_{-2i}f(z) = -\frac{2\cos(2i) + (-4i)\sin(-2i)}{(-4i)^3}$$
Finally our integral will be equal to:
$$\int_\mathbb{R} \frac{\cos(x)}{(x^2 + 4)^2} = 2\pi i (\textrm{res}_{2i}f + \textrm{res}_{-2i}f) = $$ $$=2 \pi i\frac{-2\cos(2i) - 4i\sin(2i) - 2\cos(-2i) + 4i\sin(-2i)}{(4i^3)}=$$
$$= 2 \pi (\frac{-\cos(2i) + i \sin(2i)}{4^2}) = 2 \pi [\frac{e^{-2}}{4^2}]$$
whereas using wolfram alpha the final results should be formulated as $\frac{3 \pi e^{-2}}{4^2}$ and I want to ask you where do I have the mistake? Is it more calculation error or idea error?