I learned about a example which does not have finite arc length:
The curve $\alpha(t) =\left( \begin{array}{c} t\\ t^2 \sin(\frac{1}{t^2})\\ \end{array} \right)$ has a infinite arc length between $t=0$ and $t=1$
An estimate for the arc length is to take the length of the paths between the points $\alpha(\frac{1}{\sqrt{2 \pi n + \pi/2}})$ and $\alpha(\frac{1}{\sqrt{2 \pi n}})$ and sum them up.
Now comes the calculation in the example:
$$\sum_{n=1}^{\infty} \|\alpha(\frac{1}{\sqrt{2 \pi n + \pi/2}}) -\alpha(\frac{1}{\sqrt{2 \pi n}})\|=\sum_{n=1}^{\infty}\|(\frac{1}{\sqrt{2 \pi n + \pi/2}} - \frac{1}{\sqrt{2 \pi n}})^2+(\frac{1}{2 \pi n + \pi/2})^2 \|$$
I am not really understanding how to get from the left side to the right side. Here are my calculations
$$\sum_{n=1}^{\infty} \|\left( \begin{array}{c} \frac{1}{\sqrt{2 \pi n + \pi/2}}\\ \frac{1}{2 \pi n + \pi/2} \sin(\frac{1}{2 \pi n + \pi/2})\\ \end{array} \right) - \left( \begin{array}{c} \frac{1}{\sqrt{2 \pi n}}\\ \frac{1}{2 \pi n} \sin({\frac{1}{2 \pi n}})\\ \end{array} \right)\| \\=\sum_{n=1}^{\infty} \sqrt{ (\frac{1}{\sqrt{2 \pi n + \pi/2}}-\frac{1}{\sqrt{2 \pi n}})^2 + (\frac{1}{2 \pi n + \pi/2} \sin(\frac{1}{2 \pi n + \pi /2})-\frac{1}{2 \pi n } \sin(\frac{1}{2 \pi n }))^2} $$
Now the part where I struggle:
How does $(\frac{1}{2 \pi n + \pi/2} \sin(\frac{1}{2 \pi n + \pi /2})-\frac{1}{2 \pi n }\sin(\frac{1}{2 \pi n }))^2$ equal $(\frac{1}{2 \pi n + \pi/2})^2$ ?
I tried to continue calculation but I am stuck at:
$$(\frac{1}{2 \pi n + \pi/2}\sin(\frac{1}{2 \pi n + \pi /2})-\frac{1}{2 \pi n }\sin(\frac{1}{2 \pi n }))^2\\=(\frac{1}{2 \pi n + \pi/2})^2 \sin^2 (\frac{1}{2 \pi n + \pi /2})-2\frac{1}{2 \pi n + \pi/2}\sin(\frac{1}{2 \pi n + \pi /2})\frac{1}{2 \pi n }\sin(\frac{1}{2 \pi n })+(\frac{1}{2 \pi n })^2 \sin^2 (\frac{1}{2 \pi n})$$