Let there be a function $f$ of two variables $x$ and $y$ who are dependent on a single variable $t$. I tried to derive the second order total derivative of f, $\frac{df}{dt}$
Before asking this, I have checked the topic Intuition behind second total derivative Here the poster is not asking how to derive it, they want to get the intuition behind it. Here, I have a problem deriving that six-term expression.
So, the first total derivative is $\frac { \mathrm d f } { \mathrm d t } = \frac { \partial f } { \partial x } \frac { \mathrm d x } { \mathrm d t } + \frac { \partial f } { \partial y } \frac { \mathrm d y } { \mathrm d t } $
and the second total derivative is
$\frac{\mathrm d}{\mathrm d t }(\frac { \mathrm d f } { \mathrm d t }) =\frac{\mathrm d}{\mathrm d t }( \frac { \partial f } { \partial x } \frac { \mathrm d x } { \mathrm d t }) + \frac{\mathrm d}{\mathrm d t }(\frac { \partial f } { \partial y } \frac { \mathrm d y } { \mathrm d t } )$
Applying the product rule to two terms to the right of equal sign:
$\frac { \mathrm d ^ 2 f } { \mathrm d t ^ 2 }$=$(\frac{\mathrm d}{\mathrm d t } \frac { \partial f } { \partial x })\frac { \mathrm d x } { \mathrm d t }+\frac { \partial f } { \partial x }\frac{\mathrm d}{\mathrm d t }\frac { \mathrm d x } { \mathrm d t }+(\frac{\mathrm d}{\mathrm d t } \frac { \partial f } { \partial y })\frac { \mathrm d y } { \mathrm d t }+\frac { \partial f } { \partial y }\frac{\mathrm d}{\mathrm d t }\frac { \mathrm d y } { \mathrm d t }$
and then:
$\frac { \ d ^ 2 f } { \mathrm d t ^ 2 }=\frac { \partial ^2f } { \partial x ^ 2 }\frac { \mathrm d x } { \mathrm d t }\frac { \mathrm d x } { \mathrm d t }+\frac { \partial f } { \partial x }\frac { \mathrm d^2 x } { \mathrm d t^2 }+\frac { \partial ^ 2 f } { \partial y ^ 2 }\frac { \mathrm d y } { \mathrm d t }\frac { \mathrm d y } { \mathrm d t }+\frac { \partial f } { \partial y }\frac { \mathrm d^2 y } { \mathrm d t^2 }$
Finally:
$\frac { \mathrm d ^ 2 f } { \mathrm d t ^ 2 }=\frac { \partial ^ 2 f } { \partial x ^ 2 } ( \frac { \mathrm d x } { \mathrm d t } ) ^ 2 +\frac { \partial f } { \partial x }\frac { \mathrm d^2 x } { \mathrm d t^2 }+\frac { \partial ^ 2 f } { \partial y ^ 2 } ( \frac { \mathrm d y } { \mathrm d t } ) ^ 2+\frac { \partial f } { \partial y }\frac { \mathrm d^2 y } { \mathrm d t^2 }$
However, the correct expression is
$\frac { \mathrm d ^ 2 f } { \mathrm d t ^ 2 } = \frac { \partial ^ 2 f } { \partial x ^ 2 } ( \frac { \mathrm d x } { \mathrm d t } ) ^ 2 + \frac { \partial ^ 2 f } { \partial y \, \partial x } \frac { \mathrm d y } { \mathrm d t } \frac { \mathrm d x } { \mathrm d t } + \frac { \partial f } { \partial x } \frac { \mathrm d ^ 2 x } { \mathrm d t ^ 2 } + \frac { \partial ^ 2 f } { \partial x \, \partial y } \frac { \mathrm d x } { \mathrm d t } \frac { \mathrm d y } { \mathrm d t } + \frac { \partial ^ 2 f } { \partial y ^ 2 } ( \frac { \mathrm d y } { \mathrm d t } ) ^ 2 + \frac { \partial f } { \partial y } \frac { \mathrm d ^ 2 y } { \mathrm d t ^ 2 } $
I am missing $\frac { \partial ^ 2 f } { \partial y \, \partial x } \frac { \mathrm d y } { \mathrm d t } \frac { \mathrm d x } { \mathrm d t }$ and $\frac { \partial ^ 2 f } { \partial x \, \partial y } \frac { \mathrm d y } { \mathrm d t } \frac { \mathrm d x } { \mathrm d t }$
Where do these two terms come from?