My attempt :
We introduce the function :
$$g(x)=-\sum_{k=0}^{n-1}\frac{x^{\left(k\right)}}{k!}+\frac{e^{x}}{2}$$
Using strong induction
you can show that the function $g(x)$ is increasing and convex around $x=n$ or $x\in [n,n+1]$.
Next we can use the inequality :
$$f(x)\geq f'(n)(x-n)+f(n)+0.5f''(x)(x-n)^2$$
Now we use $x=n+1$ .
On the other hand we have for $n\ge 13$:
$$\frac{2(n+1)^n}{3n!}-\frac{3n^{(n-1)}}{2(n-1)!}-\frac{n^{n-2}}{2(n-2)!}\le 0$$
To be continued.
edit 06/02/2022:
We introduce the function :
$$f(x)=\frac{e^{x}}{2}-\sum_{k=0}^{n-1}\frac{x^{k}}{k!}$$
Using Hermite Hadamard inequality on $[n,n+1]$ ($f(x)$ is convex on this interval ) we get the inequality :
$$\frac{e^{n+1}}{2}-\sum_{k=0}^{n-1}\frac{\left(n+1\right)^{k}}{k!}+\frac{e^{n}}{2}-\sum_{k=0}^{n-1}\frac{n^{k}}{k!}\geq e^{n+1}-2\sum_{k=0}^{n}\frac{\left(n+1\right)^{k}}{k!}-\left(e^{n}-2\sum_{k=0}^{n}\frac{n^{k}}{k!}\right)$$
Now we can use the inequality for $x,i>1$ i a natural number :
$$e^x>1+x+\cdots+\frac{x^i}{i!}$$
We get the inequality :
$$\frac{e^{n+1}}{2}-\sum_{k=0}^{n-1}\frac{\left(n+1\right)^{k}}{k!}+\frac{e^{n}}{2}-\sum_{k=0}^{n-1}\frac{n^{k}}{k!}\geq \sum_{k=0}^{2n}\frac{\left(n+1\right)^{k}}{k!}-2\sum_{k=0}^{n}\frac{\left(n+1\right)^{k}}{k!}-\left(e^{n}-2\sum_{k=0}^{n}\frac{n^{k}}{k!}\right)$$
Or :
$$\frac{e^{n+1}}{2}-\sum_{k=0}^{n-1}\frac{\left(n+1\right)^{k}}{k!}+\frac{e^{n}}{2}-\sum_{k=0}^{n-1}\frac{n^{k}}{k!}\geq -\sum_{k=0}^{n}\frac{\left(n+1\right)^{k}}{k!}+\sum_{k=n+1}^{2n}\frac{\left(n+1\right)^{k}}{k!}-\left(e^{n}-2\sum_{k=0}^{n}\frac{n^{k}}{k!}\right)$$
Or :
$$\frac{e^{n+1}}{2}-\sum_{k=0}^{n-1}\frac{\left(n+1\right)^{k}}{k!}\geq -\frac{n^{n}}{n!}-\sum_{k=0}^{n}\frac{\left(n+1\right)^{k}}{k!}+\sum_{k=n+1}^{2n}\frac{\left(n+1\right)^{k}}{k!}-\left(\frac{3}{2}e^{n}-3\sum_{k=0}^{n}\frac{n^{k}}{k!}\right)$$
Now I cannot show it but a numerical experiment shows that for $n\geq 7$ we have :
$$-\frac{n^{n}}{n!}-\sum_{k=0}^{n}\frac{\left(n+1\right)^{k}}{k!}+\sum_{k=n+1}^{2n}\frac{\left(n+1\right)^{k}}{k!}>0$$
And already proved here Prove this inequality $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n!}>\frac{e^x}{2}$ we have :
$$-\left(\frac{3}{2}e^{n}-3\sum_{k=0}^{n}\frac{n^{k}}{k!}\right)>0$$
It shows a weaker inequality but we may consider some improvement .
Well gives me feedback and feel free to make comment .
Last Edit 07/02/2022 :
By improvement we can use the theorem 1 here https://www.researchgate.net/publication/329884875_Hermite-Hadamard_inequality_for_M_ph_A-strongly_convex_functions
We have using the theorem 1 the inequality :
$$\frac{n^{n-2}}{6\left(n-2\right)!}+\frac{n^{n-1}}{6\left(n-1\right)!}+\frac{1}{6}\frac{n^{n}}{n!}-0.15\frac{\left(n+1\right)^{\left(n+1\right)}}{\left(n+1\right)!}>0$$
And for $n\geq 13$ it seems we have :
$$-\frac{n^{n}}{n!}-\sum_{k=0}^{n}\frac{\left(n+1\right)^{k}}{k!}+\sum_{k=n+1}^{2n}\frac{\left(n+1\right)^{k}}{k!}-0.25\frac{\left(n+1\right)^{\left(n+1\right)}}{\left(n+1\right)!}>0$$
And it seems we have for $n\geq 4$ :
$$-\left(\left(\frac{3}{2}-\frac{1}{6}\right)e^{n}-\left(3-\frac{1}{3}\right)\sum_{k=0}^{n}\frac{n^{k}}{k!}\right)-0.6\frac{\left(n+1\right)^{\left(n+1\right)}}{\left(n+1\right)!}>0\tag{I}$$
Edit 15/02/2022
To show $(I)$ we can use the fact wich follows for $n\geq 10$
$$e^n-\sum_{k=0}^{n^2}\frac{n^k}{k!}<1$$
Reference :
Turhan, Sercan & Maden, Selahattin & Demirel, Ayse Kubra & İşcan, İmdat. (2018). Hermite-Hadamard inequality for M ϕ A-strongly convex functions.