Well, we are trying to solve the following improper integral:
$$\mathcal{I}_\text{n}\left(\alpha\right):=\int_0^\infty\frac{x^\text{n}}{x+\alpha}\space\text{d}x\tag1$$
Using the 'evaluating integrals over the positive real axis' property of the Laplace transform, we can write:
$$\mathcal{I}_\text{n}\left(\alpha\right)=\int_0^\infty\mathscr{L}_x\left[x^\text{n}\right]_{\left(\sigma\right)}\cdot\mathscr{L}_x^{-1}\left[\frac{1}{x+\alpha}\right]_{\left(\sigma\right)}\space\text{d}\sigma\tag2$$
Using the table of selected Laplace transforms, we can see:
$$\mathcal{I}_\text{n}\left(\alpha\right)=\Gamma\left(1+\text{n}\right)\int_0^\infty\frac{\exp\left(-\alpha\sigma\right)}{\sigma^{1+\text{n}}}\space\text{d}\sigma\tag3$$
Using the sum definition of the $\exp$ function, we can write:
$$\mathcal{I}_\text{n}\left(\alpha\right)=\Gamma\left(1+\text{n}\right)\lim_{\text{m}\space\to\space\infty}\sum_{\text{k}\space\ge\space0}\frac{\left(-1\right)^\text{k}\alpha^\text{k}}{\text{k}!}\int_0^\text{m}\sigma^{\text{k}-\text{n}-1}\space\text{d}\sigma\tag4$$
So, we get:
$$\mathcal{I}_\text{n}\left(\alpha\right)=\Gamma\left(1+\text{n}\right)\lim_{\text{m}\space\to\space\infty}\sum_{\text{k}\space\ge\space0}\frac{\left(-1\right)^\text{k}\alpha^\text{k}}{\text{k}!}\cdot\frac{\text{m}^{\text{k}-\text{n}}}{\text{k}-\text{n}}\tag5$$
Now, when $\text{n}=-\frac{1}{3}$ and $\alpha=1$ we get:
$$\mathcal{I}_{-\frac{1}{3}}\left(1\right)=\Gamma\left(\frac{2}{3}\right)\lim_{\text{m}\space\to\space\infty}\sum_{\text{k}\space\ge\space0}\frac{\left(-1\right)^\text{k}}{\text{k}!}\cdot\frac{\text{m}^{\text{k}+\frac{1}{3}}}{\text{k}+\frac{1}{3}}=\Gamma\left(\frac{2}{3}\right)\Gamma\left(\frac{1}{3}\right)=\frac{2\pi}{\sqrt{3}}\tag6$$