0

Evaluate

$$\int_0^\infty \frac{x^{-\frac{1}{3}}}{x+1}dx$$

If I am using complex analysis is $f(x)=x^{-\frac{1}{3}}$ my function? And there are no zeroes or poles on $(0,\infty)$ since $x=-1 \not \in (0,\infty)$ is the only point of interest. Any hints greatly appreciated. I can write the integrand as

$$\frac{1}{x^{4/3}+x^{1/3}}$$ how do I integrate this??

homosapien
  • 4,157

3 Answers3

1

$$\int_0^\infty \frac{x^{-\frac{1}{3}}}{x+1}dx\,\,\,\,\stackrel{x=u^3}{=}\,\,\,\,\int_0^\infty \frac{3u}{u^3+1}du\,\,\,\,\stackrel{v=\frac 1 u}{=}\,\,\,\,\int_0^\infty \frac{3}{v^3+1}dv$$ Thus, summing the last 2 expressions, $$\begin{split} 2\int_0^\infty \frac{x^{-\frac{1}{3}}}{x+1}dx&=3\int_0^\infty \frac{v+1}{v^3+1}dv\\ &=\int_0^\infty \frac{3}{1-v+v^2}dv\\ &=\int_0^\infty \frac{4}{1+\frac 4 3\left(v-\frac 1 2\right)^2}dv\\ &= \left[2\sqrt{3}\arctan \left(\frac{2v-1}{\sqrt 3}\right)\right]_0^{+\infty}\\ &=2\sqrt{3}\left(\frac\pi 2+\frac \pi 6\right)\\ &=\frac{4\pi}{\sqrt 3} \end{split}$$

Thus the integral $\int_0^\infty \frac{x^{-\frac{1}{3}}}{x+1}dx = \frac{1}{2} \cdot \frac{4 \pi}{\sqrt{3}}=\frac{2 \pi}{\sqrt{3}}$.

homosapien
  • 4,157
Stefan Lafon
  • 12,256
  • 11
  • 29
0

This should be a duplicate, but I can't find where this, or a similar more general integral, is evaluated by the desired methods, so let me give a hint that's unfortunately too long for a comment. For small $\epsilon>0$ and large $R>1$, let $\gamma$ be the contour that moves in a line segment from $i\epsilon$ to $R+i\epsilon$, in a near circle to $R-i\epsilon$, in a line segment from $R-i\epsilon$ to $-i\epsilon$, and in a semicircle from $-i\epsilon$ to $i\epsilon$. By the residue theorem,$$\oint_\gamma\frac{\exp(-\frac13\ln z)dz}{1+z}=2\pi i\left.\exp\left(-\frac13\ln z\right)\right|_{z=-1}$$(I leave it to you to work out which branch of the complex logarithm should be used here). Now show the contribution of the semicircle (near-circle) vanishes as $\epsilon\to0^+$ ($R\to\infty$). The rest is$$\left(1-\exp\left(-\frac{2\pi i}{3}\right)\right)\int_0^\infty\frac{\exp(-\frac13\ln x)}{1+x}dx,$$because rotating through $2\pi$ radians to get to the second line segment, thereby multiplying $z$ by $e^{2\pi i}=1$ (so the integrand's denominator is unchanged), rescales the integrand. (The $-$ sign is beause we run leftward on the second line segment.)

If this contour shape is unfamiliar, note this is similar to $\int_{-\infty}^\infty f(x)dx=2\int_0^\infty f(x)dx$ for even $f$. (The much more famous infinite semicircular contour can be thought of in similar terms, if you go from $0$ to $Re^{i0}$ to $Re^{i\pi}$ to $0$.)

J.G.
  • 115,835
  • are we using the principle branch of the logarithm? as $z=-1$ we cannot have in the log. By principle brand I mean putting out the negative real axis, so $\mathbb{C} \setminus \mathbb{R}^{\leq 0}$ – homosapien Feb 01 '22 at 21:27
  • @HossienSahebjame If we should take $\ln(-1)=\pi i$, or $\ln(-1)=3\pi i$, or whatever, you can work out a value for your original integral. Can you see which branch makes the answer real? Can you see another reason to accept it? (It's related to the rotating-round-the-circle argument later in my answer.) – J.G. Feb 01 '22 at 21:30
  • So its the branch excluding the positive reals ? – homosapien Feb 01 '22 at 21:31
  • @HossienSahebjame I'm not sure what you mean by that. A branch choice in this case means deciding which integer $n$ in $\ln(-1)=\pi i+2n\pi i$ suits here. – J.G. Feb 01 '22 at 21:32
  • so an $n$ that lands us on the real axis then? – homosapien Feb 01 '22 at 21:33
  • is it $n=0$? I just competed it out – homosapien Feb 01 '22 at 21:35
0

Well, we are trying to solve the following improper integral:

$$\mathcal{I}_\text{n}\left(\alpha\right):=\int_0^\infty\frac{x^\text{n}}{x+\alpha}\space\text{d}x\tag1$$

Using the 'evaluating integrals over the positive real axis' property of the Laplace transform, we can write:

$$\mathcal{I}_\text{n}\left(\alpha\right)=\int_0^\infty\mathscr{L}_x\left[x^\text{n}\right]_{\left(\sigma\right)}\cdot\mathscr{L}_x^{-1}\left[\frac{1}{x+\alpha}\right]_{\left(\sigma\right)}\space\text{d}\sigma\tag2$$

Using the table of selected Laplace transforms, we can see:

$$\mathcal{I}_\text{n}\left(\alpha\right)=\Gamma\left(1+\text{n}\right)\int_0^\infty\frac{\exp\left(-\alpha\sigma\right)}{\sigma^{1+\text{n}}}\space\text{d}\sigma\tag3$$

Using the sum definition of the $\exp$ function, we can write:

$$\mathcal{I}_\text{n}\left(\alpha\right)=\Gamma\left(1+\text{n}\right)\lim_{\text{m}\space\to\space\infty}\sum_{\text{k}\space\ge\space0}\frac{\left(-1\right)^\text{k}\alpha^\text{k}}{\text{k}!}\int_0^\text{m}\sigma^{\text{k}-\text{n}-1}\space\text{d}\sigma\tag4$$

So, we get:

$$\mathcal{I}_\text{n}\left(\alpha\right)=\Gamma\left(1+\text{n}\right)\lim_{\text{m}\space\to\space\infty}\sum_{\text{k}\space\ge\space0}\frac{\left(-1\right)^\text{k}\alpha^\text{k}}{\text{k}!}\cdot\frac{\text{m}^{\text{k}-\text{n}}}{\text{k}-\text{n}}\tag5$$


Now, when $\text{n}=-\frac{1}{3}$ and $\alpha=1$ we get:

$$\mathcal{I}_{-\frac{1}{3}}\left(1\right)=\Gamma\left(\frac{2}{3}\right)\lim_{\text{m}\space\to\space\infty}\sum_{\text{k}\space\ge\space0}\frac{\left(-1\right)^\text{k}}{\text{k}!}\cdot\frac{\text{m}^{\text{k}+\frac{1}{3}}}{\text{k}+\frac{1}{3}}=\Gamma\left(\frac{2}{3}\right)\Gamma\left(\frac{1}{3}\right)=\frac{2\pi}{\sqrt{3}}\tag6$$

Jan Eerland
  • 28,671