I think your question needs revision. Here is what I think the revised statement should be:
Proposition: Suppose that $u\in C^2(\mathbb R^n)\cap L^2(\mathbb R^n)$ satisfies $\Delta u = 0$ in $\mathbb R^n \setminus B_1$, $u=0$ on $\partial B_1$. Then $u=0$ in $\mathbb R^n \setminus B_1$.
I will give two counter-examples which justify why I think these changes are appropriate. Then I will prove this proposition.
Why can we only conclude $u=0$ in $\mathbb R^n \setminus B_1$? This was answered by Dan Doe in the comments. In fact, any smooth function $v:B_{1/2} \to \mathbb R$ can be smoothly extended so that $v=0$ in $\mathbb R^n \setminus B_1$. Hence, there is absolutely no way to say anything about $u$ in $B_1$.
Why do we need $u=0$ on $\partial B_1$? Let $u(x) = \vert x \vert^{2-n}$ be the fundamental solution. Then $\Delta u=0$ in $\mathbb R^n \setminus B_1$ (it is harmonic everywhere but $0$). Then $u^2 = \vert x \vert^{4-2n}$ which is integrable in $\mathbb R^n \setminus B_1$ provided that $n>4$. Moreover, $\vert \nabla u \vert^2 = (n-2)^2 \vert x \vert^{2-2n}$ which is integrable provided that $n>2$. Hence, for $n>4$ the fundamental solution contradicts your statement.
Proof of Proposition: Let $\eta \in C^1(B_{2r}\setminus B_1)$ be nonnegative such that $\eta =0$ on $\partial B_{2r}$. Since $u$ vanishes on $\partial B_{1}$, integration by parts gives that \begin{align*}
0 &= \int_{B_{2r}\setminus B_1} \eta^2 u \Delta u \, dx \\
&= - \int_{B_{2r} \setminus B_1} \nabla (\eta^2 u) \cdot \nabla u \, dx \\
&=- 2\int_{B_{2r} \setminus B_1} \eta u \nabla \eta \cdot \nabla u \, dx - \int_{B_{2r} \setminus B_1} \eta^2 \vert \nabla u \vert^2 \, dx.
\end{align*} Rearranging, applying the Cauchy-Schwarz inequality then applying the Hölder inequality gives \begin{align*}
\int_{B_{2r} \setminus B_1} \eta^2 \vert \nabla u \vert^2 \, dx &=- 2\int_{B_{2r} \setminus B_1} \eta u \nabla \eta \cdot \nabla u \, dx \\
&\leqslant 2\int_{B_{2r} \setminus B_1} \eta \vert u \vert \vert \nabla \eta \vert\cdot \vert \nabla u \vert \, dx \\
&\leqslant 2\bigg ( \int_{B_{2r} \setminus B_1} \eta^2 \vert \nabla u\vert^2 \, dx\bigg ) ^{1/2} \bigg (\int_{B_{2r} \setminus B_1} u^2 \vert \nabla \eta \vert^2\, dx \bigg )^{1/2}
\end{align*} This implies the following (small) variant on the classical Caccioppoli inequality: \begin{align*}
\int_{B_{2r} \setminus B_1} \eta^2 \vert \nabla u \vert^2 \, dx &\leqslant 4\int_{B_{2r} \setminus B_1} u^2 \vert \nabla \eta\vert^2 \, dx .
\end{align*}
Fix $\varepsilon >0$ small and choose $\eta$ such that $$\eta (x) = \begin{cases}
1, &\text{if } x\in B_r \setminus B_1, \\
\frac 1 r (2r-\vert x \vert^2 ), &\text{if } x \in B_{2r} \setminus B_r.
\end{cases} $$ Then, since $\vert \nabla \eta \vert = \frac1r$ in $B_{2r} \setminus B_r$\begin{align*}
\int_{B_{r} \setminus B_1} \vert \nabla u \vert^2 \, dx \leqslant\int_{B_{2r} \setminus B_1} \eta^2 \vert \nabla u \vert^2 \, dx
\leqslant 4\int_{B_{2r} \setminus B_1} u^2 \vert \nabla \eta\vert^2 \, dx\leqslant \frac 4 r\| u \|_{L^2(\mathbb R^n)}^2.\end{align*} Sending $r\to \infty$, we obtain $\| \nabla u \|_{L^2(\mathbb R^n \setminus B_1)}=0$, so $u$ is a constant. Then, since $u$ is in $L^2$ it must be zero.
This is clearly not $f(\boldsymbol{x} ) \equiv 0 $. Based on your assumptions, I am not sure you can control $f$ in $\Vert \boldsymbol{x} \Vert \leq 1$ .
– Dan Doe Feb 03 '22 at 07:53