I want to determine(or classify) all the complex matrix $X$, i.e., $X \in M_{n\times n}(\mathbb{C})$ satisfying $AX=XA$ for every $A \in M_{n\times n}(\mathbb{C})$.
Obviously if $X= O_n=0$ or $X= I_n= \operatorname{diag}(1,\cdots, 1)$ then it commutes.
Explicit trials : For $n=1$ is trivial.
For $n=2$, denoting $(A)_{ij} = a_{ij}, (X)_{ij} = x_{ij}$, One have \begin{align} \begin{pmatrix} a_{11} x_{11} + a_{12} x_{21} & a_{11} x_{12} + a_{12} x_{22} \\ a_{21} x_{11} + a_{22} x_{21} & a_{21} x_{12} + a_{22} x_{22} \end{pmatrix}= \begin{pmatrix} x_{11} a_{11} + x_{12} a_{21} & x_{11} a_{12} + x_{12} a_{22} \\ x_{21} a_{11} + x_{22} a_{21} & x_{21} a_{12} + x_{22} a_{22} \end{pmatrix} \end{align} Since my $A$ is arbitrary, solving these four equations in terms of $x_{ij}$...
Solving this I have $x_{21} = \frac{a_{21} x_{12}}{a_{12}}$, $x_{22} = x_{11} - \frac{(a_{11} - a_{22})x_{12}}{a_{12}}$.
Do I have to solve for the $n\times n$ matrix explicitly? .. Any ideas or known results?