The following problem is taken from JEE exam practice set.
Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1=1,a_2=1$ and $a_{n+2}=2a_{n+1}+a_{n}$ for all $n\ge1$. Find the value of $47\sum_{n=1}^{\infty}\dfrac{a_n}{2^{3n}}$
Attempt$1$: The given sequence is $1,1,3,7,17,41,98...$
Let $S=\dfrac{1}{2^3}+\dfrac{1}{2^6}+\dfrac{3}{2^9}+\dfrac{7}{2^{12}}+\dfrac{41}{2^{15}}+\dfrac{98}{2^{18}}+...$
$\dfrac{S}{2^3}=\dfrac{1}{2^6}+\dfrac{1}{2^9}+\dfrac{3}{2^{12}}+\dfrac{7}{2^{15}}+\dfrac{41}{2^{18}}+\dfrac{98}{2^{21}}+...$
$\implies(1-\dfrac1{2^3})S=\dfrac{1}{2^3}+\dfrac{2}{2^9}+\dfrac{4}{2^{12}}+\dfrac{34}{2^{15}}+\dfrac{57}{2^{18}}+...$
Not able to finish.
Attempt$2$: $a_3=2+1, a_4=2^2+2+1, a_5=2^3+2^2+2+2+1=2^3+2^2+2^2+1=2^4+1$
$a_6=2^5+2+2^2+2+1=2^5+2^3+1, a_7=2^6+2^4+2+2^4+1=2^6+2^5+2+1$
Not able to finish this one either.
Attempt$3$: $\dfrac{a_n}{2^{3n}}=\dfrac{a_{n+2}-2a_{n+1}}{2^{3n}}=\dfrac{a_{n+2}}{2^{3n}}-\dfrac{a_{n+1}}{2^{3n-1}}$
Don't know what I can do with this one.
Attempt$4$:$\dfrac{a_n}{2^{3n}}=\dfrac{2{a_{n-1}}+a_{n-2}}{2^{3n}}=\dfrac{2^2a_{n-2}+2a_{n-3}+a_{n-2}}{2^{3n}}=\dfrac{(2^2+1)a_{n-2}+a_{n-3}}{2^{3n}}=\dfrac{(2^3+2+1)a_{n-3}+(2^2+1)a_{n-4}}{2^{3n}}$
Not feeling confident with this one either.