Wolfram|Alpha returns an antiderivative of
$$\int \frac{\sec^2(x)}{\left(4+\tan^2(x)\right)^2} \, dx = \frac{2\sin(2x) - (3\cos(2x)+5) \arctan\left(2\cot(x)\right)}{48\cos(2x) + 80} + C$$
which we can rewrite as
$$-\frac1{16} \arctan\left(2\cot(x)\right) + \frac18 \cdot \frac{\sin(2x)}{3\cos(2x) + 5} + C$$
The antiderivative you found was
$$\int\frac{\sec^2(x)}{\left(4+\tan^2(x)\right)^2} \, dx = \frac1{16} \arctan\left(\frac12 \tan(x)\right) + \frac1{32} \sin\left(2\arctan\left(\frac12\tan(x)\right)\right) + C$$
We have
$$\arctan(x) + \arctan\left(\frac1x\right) = \begin{cases}\frac\pi2 & \text{if }x>0 \\ -\frac\pi2 & \text{if }x<0\end{cases}$$
If we take $2\cot(x)>0$, then
$$\begin{align}
-\frac1{16} \arctan(2\cot(x)) + C &= -\frac1{16} \arctan(2\cot(x)) - \frac\pi2 + C \\
&= \frac1{16} \arctan\left(\frac1{2\cot(x)}\right) + C \\
&= \frac1{16} \arctan\left(\frac12\tan(x)\right) + C
\end{align}$$
so that the first terms "match" (not identical, but they only differ by a constant). A similar conclusion is made by instead assuming $2\cot(x)<0$.
Since $\sin(2x) = 2\cos(x)\sin(x)$, the second term in your solution is
$$\frac1{16} \sin\left(\arctan\left(\frac12\tan(x)\right)\right) \cos\left(\arctan\left(\frac12\tan(x)\right)\right) = \frac18 \cdot \frac{\tan(x)}{4 + \tan^2(x)}$$
(Consider a right triangle with reference angle $\theta$ for which $\tan(\theta)=\frac12\tan(x)$, so the ratio of the legs opposite and adjacent to $\theta$ is $\tan(x)$ to $2$. It follows that this triangle's hypotenuse has length $\sqrt{4+\tan^2(x)}$.)
Now, we have
$$\begin{align}
\frac18\cdot\frac{\tan(x)}{4+\tan^2(x)} &= \frac18 \cdot \frac{\sin(x)\cos(x)}{4\cos^2(x)+\sin^2(x)} \\
&= \frac18 \cdot \frac{\frac12 \sin(2x)}{3\cos^2(x) + 1} \\
&= \frac1{16} \cdot \frac{\sin(2x)}{\frac32(1+\cos(2x))+1} \\
&= \frac18 \cdot \frac{\sin(2x)}{5+3\cos(2x)}
\end{align}$$
and so both solutions also have matching second terms.