Let our ring be $\mathbb C[x,y]$
and say I want to determine vanishing ideals of below subsets of $\mathbb A^2(\mathbb C)$- affine complex plane, with finitely many polynomials(since every ideal is finitely generated).
-
- $V=\{(0,0),(1,1)\}\subset A^2(\mathbb C)$
-
- $U=\{(n,n)\mid n\in\mathbb Z\}\subset A^2(\mathbb C)$
Definition of vanishing ideal : Let $V\subset A^2(\mathbb C)$ then $$I(V)=\{f\in \mathbb C[x,y] \mid f(x,y)=0, \forall (x,y)\in V\}$$
For $1.$ I know $I(\{(a,b)\})=\langle x-a,y-b\rangle $ $$I(\{(0,0),(1,1)\})=I(0,0)\cap I(1,1)\\=\langle x,y\rangle \cap \langle x-1,y-1\rangle =\langle xy(x-1)(y-1)\rangle $$
For $2.$ Similarly: $$I(\{(n,n)\mid n\in\mathbb Z\})=\bigcap_{n\in \mathbb Z} I(n,n)\\=\left\langle\prod_{n\in\mathbb Z}(x-n)(y-n)\right\rangle$$
Are my approaches correct or in 2. the product not defined (because is not polynomial?)?
And what is the good/proper approach/algorithm to calculate vanishing ideals for any polynomial ring $k[x_1,x_2,\cdots, x_n]$ where $k$ need not to be algebraicly closed.