By the generalization in my post,we are going to evaluate the integral $$\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n}},$$ where $n\in N.$
First of all, let us define the integral $$I_n(a)=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a\right)^{n}} \textrm{ for any positive real number }a.$$
Again, we start with $$I_1(a)=\int_{0}^{\infty} \frac{d x}{x^{2}+a}= \left[\frac{1}{\sqrt{a}} \tan ^{-1}\left(\frac{x}{\sqrt{a}}\right)\right]_{0}^{\infty} = \frac{\pi}{2 }a^{-\frac{1}{2} } $$
Then differentiating $I_1(a)$ w.r.t. $a$ by $n-1$ times yields $$ \int_{0}^{\infty} \frac{(-1)^{n-1}(n-1) !}{\left(x^{2}+a\right)^{n}} d x=\frac{\pi}{2} \left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{2 n-3}{2}\right) a^{-\frac{2 n-1}{2}} $$
Rearranging and simplifying gives $$ \boxed{\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a\right)^{n}} =\frac{\pi a^{-\frac{2 n-1}{2}}}{2^{n}(n-1) !} \prod_{k=1}^{n-1}(2 k-1)} $$
Putting $a=1$ gives the formula of our integral $$ \boxed{\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n}} =\frac{\pi}{2^{n}(n-1) !} \prod_{k=1}^{n-1}(2 k-1)= \frac{\pi}{2^{2 n-1}} \left(\begin{array}{c} 2 n-2 \\ n-1 \end{array}\right)}$$
For verification, let’s try $$ \begin{aligned} \int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{10}} &= \frac{\pi}{2^{19}}\left(\begin{array}{c} 18 \\ 9 \end{array}\right) =\frac{12155 \pi}{131072} , \end{aligned} $$ which is checked by Wolframalpha .
Are there any other methods to find the formula? Alternate methods are warmly welcome.
Join me if you are interested in creating more formula for those integrals in the form $$ \int_{c}^{d} \frac{f(x)}{\left(x^{m}+1\right)^{n}} d x. $$
where $m$ and $n$ are natural numbers.