Show that $\lim_{n\to \infty} n^{1/n} = 1$.
My attempt
Let $a_{n} = n^{1/n}$.
$|a_{n}-1| = |n^{1/n}-1| < n^{1/n} \leq n$.
Consider $|a_{n}-1| < \varepsilon$.
or $n<\varepsilon$.
or $n > 1/\varepsilon$.
Let $m$ be any integer greater than $1/\varepsilon$. Then for $\varepsilon>0$, there exists a positive integer $m$ such that $|a_{n}-1| < \varepsilon$, for all $n\geq m$.
Therefore, $\lim_{n\to \infty} n^{1/n} = 1$.
Is this proof correct?