Given that $\lim_{x\to 0}\frac{f(2x)-f(x)}{x}=0$ and $\lim_{x\to 0} f(x)=0$, it is to be proven that $\lim _{x\to 0}\frac {f(x)}{x}=0$.
Proof: Let $\epsilon\gt 0$ be fixed. \begin{align*} \frac {f(x)}x&=\sum_{k=0}^n\color{blue}{\frac{f(x/2^k)-f(x/2^{k+1})}{x/2^{k+1}}}(1/2^{k+1})+\frac{\color{green}{f(x/2^{n+1})}}{x}\\ &=\sum_{k=0}^n\color{blue}{g_k(x)}(1/2^{k+1})+\frac{\color{green}{h_n(x)}}{x}\\ \text{There exists $N$ such that }\\ \left|\frac {f(x)}x\right|&\le \sum_{k=0}^N|g_k(x)|\frac 1{2^{k+1}}+\epsilon\sum_{k=N+1}^\infty\frac 1{2^{k+1}}+\frac 1{|x|}\epsilon|x|\\ \text{It follows that } \\&0\le\liminf \left|\frac {f(x)}x\right|\le \limsup\left|\frac {f(x)}x\right|\le \epsilon\sum_{k=N+1}^\infty\frac 1{2^{k+1}}+\epsilon\\ \text{Taking $N\to \infty$,it follows that}\\&0\le\liminf \left|\frac {f(x)}x\right|\le \limsup\left|\frac {f(x)}x\right|\le \epsilon\tag 1 \end{align*}
Since $\epsilon\gt 0$ is arbitrary, it follows by $(1)$ that $\liminf \left|\frac {f(x)}x\right|= \limsup\left|\frac {f(x)}x\right|=0=\lim_{x\to 0} \frac{f(x)}x. \;\;\; \blacksquare$
Is my proof correct? Thanks.