Not a single radical, but a pair of uncoupled radicals.
Suppose $\sqrt{a-\sqrt{b}}=\sqrt u-\sqrt v$. Then
$(\sqrt u-\sqrt v)^2=a-\sqrt{b}=(u+v)-2\sqrt{uv}$
If $u$ and $v$ are both rational then we must have $u+v=a, uv=b/4$ from which $(u-v)^2=(u+v)^2-4uv=a^2-b$. So with $u>v$ for a positive square root, we have
$\sqrt{a-\sqrt b}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$
where to get rational radicands we need $a^2-b$ to be a rational square.
In this case $a=x-2$ and $a^2-b=4=2^2$, so we can render
$\sqrt{(x-2)-\sqrt{(x-2)^2-4}}=\sqrt{\dfrac{x}{2}}-\sqrt{\dfrac{x-4}{2}}.$