1

The Fibonacci series defined recursively by $x(1) = 1, x(2) = 2$ and $x(n+1) = x(n) + x(n-1)$

Find$$\lim_{n\rightarrow\infty}\frac{x(n+1)}{x(n)}$$

Shravan40
  • 645
  • There's a nice explicit formula for the $n$th term of the Fibonacci sequence. http://en.wikipedia.org/wiki/Fibonacci_number#Closed-form_expression – Ray Yang Jul 04 '13 at 14:00

3 Answers3

5

Let $L= \lim_{x\rightarrow \infty} \dfrac{x(n+1)}{x(n)}= L$. By the recursive definition we also have that $\lim_{x\rightarrow \infty} \dfrac{x(n+1)}{x(n)}=\lim_{x\rightarrow \infty}\dfrac{x(n)+x(n-1)}{x(n)}= 1+\dfrac{1}{L}$. Therefore,

$$\begin{align*}1+\dfrac{1}{L}=L\\ L^2 - L - 1=0 \end{align*}$$

So $$\dfrac{L=1\pm\sqrt{5}}{2}$$.

A.E
  • 2,473
1

Hint:

If we denote $\lambda = \lim_{n \to \infty}\frac{x(n+1)}{x(n)} \neq 0$ then

$$\lambda = \lim_{n \to \infty}\frac{x(n)+x(n-1)}{x(n)} = 1+\frac{1}{\lambda}.$$

Also, observe that $x(n) < x(n+1) < 2x(n)$, which gives you convergence (see the Bolzano-Weierstrass theorem) and $1 < \lambda < 2$.

I hope this helps ;-)

dtldarek
  • 37,381
1

$\cfrac{x_{n+1}}{x_n}=\cfrac{x_n+x_{n-1}}{x_n}=1+\cfrac{x_{n-1}}{x_n}$

Now take $l=\lim\limits_{n\to +\infty}\cfrac{x_{n+1}}{x_n}$

$l=1+\cfrac{1}{l}$

xavierm02
  • 7,495