I am trying to compute the integral
$$\int_0^{\pi/3}\frac{x}{\cos(x)}\,dx \tag{1}$$
Context: Originally I was trying to prove the following result:
$$\sum_{n=0}^\infty\frac{1}{(2n+1)^2\binom{2n}{n}}=\frac83\beta(2)-\frac{\pi}3\ln(2+\sqrt{3})\tag{2}$$
Where $\beta(2)$ is the Catalan´s constant
To this end I started with the well known result
$$\frac{\arcsin(x)}{\sqrt{1-x^2}}=\sum_{n=0}^\infty\frac{4^n x^{2n+1}}{(2n+1)\binom{2n}{n}} \tag{3}$$
Dividing both sides of $(3)$ by $x$ and integrating from $0$ to $1/2$ we obtain
$$\int_0^{1/2}\frac{\arcsin(x)}{x\sqrt{1-x^2}}\,dx=\frac12\sum_{n=0}^\infty\frac{ 1}{(2n+1)^2\binom{2n}{n}} \tag{4}$$
So the task reduces to compute the integral in $(4)$. Therefore
$$ \begin{aligned} \sum_{n=0}^\infty\frac{ 1}{(2n+1)^2\binom{2n}{n}}&=2\int_0^{1/2}\frac{\arcsin(x)}{x\sqrt{1-x^2}}\,dx\\ &=2\int_0^{\pi/6}\frac{x}{\sin(x)}\,dx &(x \to \sin(x))\\ &=2\int_0^{\pi/2}\frac{x}{\sin(x)}\,dx-2\int_{\pi/6}^{\pi/2}\frac{x}{\sin(x)}\,dx\\ &=4\beta(2)-2\int_{\pi/6}^{\pi/2}\frac{x}{\sin(x)}\,dx\\ &=4\beta(2)-2\int_{0}^{\pi/3}\frac{\left(\frac{\pi}{2}-x\right)}{\cos(x)}\,dx & (x \to \frac{\pi}{2}-x)\\ &=4\beta(2)-\pi\int_{0}^{\pi/3}\sec(x)\,dx+2\int_{0}^{\pi/3}\frac{x}{\cos(x)}\,dx\\ &=4\beta(2)-\pi\ln\left(\sec(x)+\tan(x) \right)\Big|_0^{\pi/3}+2\int_{0}^{\pi/3}\frac{x}{\cos(x)}\,dx\\ &=4\beta(2)-\pi\ln\left(2+\sqrt{3}\right)+2\int_{0}^{\pi/3}\frac{x}{\cos(x)}\,dx\\ &=4\beta(2)-\pi\ln\left(2+\sqrt{3}\right)+4\int_{0}^{\pi/3}\frac{x}{e^{ix}+e^{-ix}}\,dx\\ &=4\beta(2)-\pi\ln\left(2+\sqrt{3}\right)+4\int_{0}^{\pi/3}\frac{xe^{-ix}}{1+e^{-2ix}}\,dx\\ &=4\beta(2)-\pi\ln\left(2+\sqrt{3}\right)+4\int_{0}^{\pi/3}xe^{-ix}\sum_{k=0}^\infty(-1)^ke^{-2ikx}\,dx\\ &=4\beta(2)-\pi\ln\left(2+\sqrt{3}\right)+4\sum_{k=0}^\infty(-1)^k\int_{0}^{\pi/3}xe^{-ix(2k+1)}\,dx\\ \end{aligned} $$
The integral in the last line is $(1)$. I integrated by parts, but ended up with some nasty series not very promising.