We can also use Dirichlet eta-function $\eta(s)=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^s}$ to define this limit.
First of all we see that eta-function is defined (the series converges) for $s>0$ (Dirichlet convergence test).
Next, we use the relation between eta-function and zeta-function for $s>1$:
$$\eta(s)=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^s}=\sum_{n=1}^\infty\frac{1}{n^s}-2\sum_{n=1}^\infty\frac{1}{(2n)^s}=\big(1-2^{1-s}\big)\zeta(s)$$
Using this relation we can define zeta-function for $s\in(0;1)$ as $\zeta(s)=\frac{\eta(s)}{1-2^{1-s}}$
We can also present eta-function in the form
$$\lim_{N\to\infty}\sum_{n=1}^{2N}\frac{(-1)^{n-1}}{n^s}=\lim_{N\to\infty}\bigg(\sum_{n=1}^{2N}\frac{1}{n^s}-2\sum_{n=1}^N\frac{1}{(2n)^s}\bigg)=\lim_{N\to\infty}\bigg(\sum_{n=1}^{N}\frac{1-2^{1-s}}{n^s}+\sum_{n=N+1}^{2N}\frac{1}{n^s}\bigg)$$
The second term can be presented as the Riemann sum at $N\to\infty$
$$I_2(N)=\sum_{n=N+1}^{2N}\frac{1}{n^s}=\frac{N}{N^S}\frac{1}{N}\sum_{n=N+1}^{2N}\frac{1}{\Big(\frac{n}{N}\Big)^s}\to N^{1-s}\int_1^2\frac{dx}{x^s}=N^{1-s}\frac{2^{1-s}-1}{1-s}$$
$$\eta(s)=\lim_{N\to\infty}\bigg(\sum_{n=1}^{N}\frac{1-2^{1-s}}{n^s}-N^{1-s}\frac{1-2^{1-s}}{1-s}\bigg)$$
$$\zeta(s)=\lim_{N\to\infty}\bigg(\sum_{n=1}^{N}\frac{1}{n^s}-\frac{N^{1-s}}{1-s}\bigg)\,;\,\,\, s\in(0;1)$$
Our initial limit
$$\lim_{N\to\infty}\left(2\sqrt{N+1}\;-\;\sum_{n=1}^N\frac1{\sqrt{n}}\right)=\lim_{N\to\infty}\left(2\sqrt{N}\;-\;\sum_{n=1}^N\frac1{\sqrt{n}}\right)=-\zeta\big(\frac{1}{2}\big)=1.46035...$$
Zeta-function