Let $f:A \to B$ and $C,D\subset A$ then we have the following properties:
$ \space i)\space f(C\cup D)=f(C)\cup f(D)$
$ii)\space f(C\cap D)=f(C)\cap f(D)$
I tried to prove the first property with a direct proof, and the second property with an element-wise proof.
Proof of $i)$
$f(C\cup D)=\{f(x)\in B:x\in C\cup D\}$ (by the definition of a functions's image)
$\space \space \space \space \space \space\space \space \space \space \space \space \space \space \space \space =\{f(x)\in B:x\in C \text{ or } x\in D\}$ ( just writing the set's property in words )
$ \space \space \space \space \space \space\space \space \space \space \space \space \space \space \space \space =\{f(x)\in B:x\in C \}\cup \{f(x)\in B:x\in D\}$ (by the definition of a union )
$\space \space \space \space \space \space\space \space \space \space \space \space \space \space \space \space = f(C)\cup f(D)$ (again by the definition of a functions image)
Proof of $ii)$
Let $f(x)\in f(C\cap D)$, then $x\in C\cap D$ hence $x$ maps to both $f(C)$ and $f(D)$, so $f(x)\in f(C)\cap f(D)$. Conversely, let $f(x)\in f(C)\cap f(D)$ then $x\in C$ and $x\in D$, and therefore $x$ maps to $f(C\cap D)$, hence $f(x)\in f(C \cap D)$. Since we have shown that $f(C \cap D) \subset f(C)\cap f(D)$ and that $f(C)\cap f(D) \subset f(C \cap D) $, we have shown that $ f(C\cap D)=f(C)\cap f(D)$.
I am not sure if the second proof is sufficient. I feel more confident with the first proof. If you could please give my some constructive feedback. Thank you for your time.