3

Noted that ellipse properties $d_1+d_2=2D$, focal length, $f=c$ and radius of minor axis $=r$.

Let $d_1=a;d_2=b$

If $ab$ is not maximum, then $\sqrt{ab}$ not maximum

W.l.o.g, prove max $ab=D^2$

$ab=\sqrt{(r-dr)^2+(c-dc)^2}×\sqrt{(r-dr)^2+(c+dc)^2}$

$ab=\sqrt{(r-dr)^4+(r-dr)^2(2c^2+2d^2c)+(c^2-d^2c)^2}$

the expression should be all in the form x -dx, so how do I convert $2c^2+2d^2c$ into x-dx form

person
  • 1,373
Pck Tsp
  • 135

0 Answers0