I'm looking to prove that $\lim_{n\to\infty}{\frac{n^n}{n!}}=\infty$.
I know I can use the ratio test which gives $e > 1$, thus it diverges to $\infty$, but does the following proof also work?
$$ \frac{n^n}{n!} = \frac{n}{n} \cdot \frac{n}{n-1} \cdot ... \cdot \frac{n}{2} \cdot \frac{n}{1} $$
So the first term $\frac{n}{n} = 1$, and the other $n-1$ terms are some value $a$ such that $1 < a \leq n$.
So,
$$\lim_{n\to\infty}\prod_{i=1}^{n}a = \infty \textrm{, therefore } \lim_{n\to\infty}\frac{n^n}{n!} = \infty $$
Is this a valid proof?