I am interested in the distribution of $x^4$ for normal distributed $x\sim \mathcal{N}(\mu,1)$.
For $\mu=0$ I know the probability distribution (source): $$f(z)=\frac{1}{2\sqrt{2\pi} z^{3/4}}{\rm e}^{-\frac{\sqrt{z}}{2}} \,\,{\rm with }\,z\ge 0$$
I am interested in the distribution of $x^4$ for normal distributed $x\sim \mathcal{N}(\mu,1)$.
For $\mu=0$ I know the probability distribution (source): $$f(z)=\frac{1}{2\sqrt{2\pi} z^{3/4}}{\rm e}^{-\frac{\sqrt{z}}{2}} \,\,{\rm with }\,z\ge 0$$