0

It is well-known that $$\int_{-\infty}^\infty e^{-x^2}\,dx = \sqrt{\pi}.$$

I noticed that $y = \frac{1}{x^n + 1}$ for even $n$ has a similar shape to the bell curve. Let $$A(n) = \int_{-\infty}^\infty \frac{1}{x^{2n} + 1}, \qquad n \in \mathbb{N}.$$ Then, $A(1) = \pi$ using the fact that $\frac{1}{x^2 + 1} = \frac{d}{dx}(\tan^{-1}x)$. Also, $A(2) = \frac{\pi}{\sqrt{2}}$ using partial fractions. Now, for me at least, it starts to get tedious. Through WolframAlpha, some results including the first ones are the following:

$n$ $A(n)$
$1$ $\pi$
$2$ $\frac{\pi}{\sqrt{2}}$
$3$ $\frac{2\pi}{3}$
$4$ $\frac{1}{4}\pi\csc(\pi/8)$
$5$ $\frac{4\pi}{5(\sqrt{5} - 1)}$

When finding $A(6)$ through WolframAlpha, the result given was $\frac{1}{12}\Gamma(\frac{1}{12})\Gamma(\frac{11}{12})$. For me, I think it is unusual for the Gamma function to show up.

I saw this answer for $A(2)$ where it uses the Gamma function to solve. Let $k = 2n$. By generalizing this, \begin{align} \int_0^\infty \frac{1}{x^k + 1} \, dx &= \int_0^\infty\int_0^\infty e^{-(x^k + 1)t} \, dx\, dt \\ &= \int_0^\infty e^{-t}\int_0^\infty e^{-x^k t} \, dx\, dt \\&=\int_0^\infty e^{-t}\left(\int_0^\infty e^{-x^k t}\, dx\right)\,dt \\&=\frac{1}{k}\int_0^\infty t^{-\frac{1}{k}}e^{-t}\left(\int_0^\infty u^{\frac{1}{k}-1} e^{-u}\,du\right)\,dt \\&=\frac{1}{k}\left(\int_0^\infty t^{-\frac{1}{k}}e^{-t}\,dt\right)\left(\int_0^\infty u^{\frac{1}{k}-1} e^{-u}\,du\right) \\&=\frac{1}{k} \Gamma\left(1-\frac{1}{k}\right)\Gamma\left(\frac{1}{k}\right) \end{align}

Is this the simplest closed form for the area under $\frac{1}{x^{2n} + 1}$?

soupless
  • 2,344

1 Answers1

3

Using the Reflection formula

$$\Gamma\left(1-z\right)\Gamma(z)=\frac{\pi}{\sin\pi z}$$ combined with what you found in that other answer: $$\int_{-\infty}^\infty \frac{1}{x^{2n} + 1} \, dx =\frac{\pi}{n\sin\frac \pi {2n}}$$

Stefan Lafon
  • 12,256
  • 11
  • 29