0

$$9 = 2^x \text{ mod } 11$$

How do you use a calculator to obtain this value?

The $x$ is an integer. Used in Diffie–Hellman key exchange algorithm.

Gary
  • 31,845

1 Answers1

1

We check by hand and get $2^{6} \equiv 9 \pmod{11}.$

By Fermat's little theorem, $2^{10} \equiv 1 \pmod{11}.$

$2^{10n+6}\equiv 2^{6} (2^{10})^{n}\equiv2^{6}\equiv9 \pmod{11}.$

Hence $x=10n+6$ for all $n\in\Bbb Z.$

Tomita
  • 2,346