$$9 = 2^x \text{ mod } 11$$
How do you use a calculator to obtain this value?
The $x$ is an integer. Used in Diffie–Hellman key exchange algorithm.
$$9 = 2^x \text{ mod } 11$$
How do you use a calculator to obtain this value?
The $x$ is an integer. Used in Diffie–Hellman key exchange algorithm.
We check by hand and get $2^{6} \equiv 9 \pmod{11}.$
By Fermat's little theorem, $2^{10} \equiv 1 \pmod{11}.$
$2^{10n+6}\equiv 2^{6} (2^{10})^{n}\equiv2^{6}\equiv9 \pmod{11}.$
Hence $x=10n+6$ for all $n\in\Bbb Z.$
m=Mod(2,11);znlog(9,m,znorder(m))
and get6
. Verifym=Mod(2,11);m^6
and getMod(9, 11)
. – Dmitry Ezhov Jan 05 '22 at 13:38