Evaluate $\lim_{n \to \infty} \left(\int_0^1 e^{-x^2/n} dx\right)^n$.
I've tried this: from Taylor's expansion at $t_0=0$ of the function $e^t$, I get that for any $t \in \mathbb{R}$ it is $e^t \ge 1+t$. Moreover, for the Lagrange's remainder of the Taylor's expansion there exists $c(t)$ on the segment of endpoints $0$ and $t$ such that $$e^t=1+t+\frac{t^2}{2}+\frac{t^3}{6}e^{c(t)}$$ When $t \le 0$, it is $\frac{t^3}{6}e^{c(t)}\le0$; hence for $t \le 0$ it is $e^t\le1+t+\frac{t^2}{2}$.
Since $-\frac{x^2}{n} \le 0$ for any $x\in[0,1]$ and for any $n\in\mathbb{N}$, it is $$1-\frac{x^2}{n}\le e^{-x^2/n} \le 1-\frac{x^2}{n}+\frac{x^4}{2n^2}$$ For monotonicity of integral, integrating in the inequality in the interval $[0,1]$ it is $$1-\frac{1}{3n} \le \int_0^1 e^{-x^2/n} dx\le1-\frac{1}{3n}+\frac{1}{10n^2}$$ Since $1-\frac{1}{3n} \ge 0$ for any $n\in\mathbb{N}$, for the monotonicity of the $n$-th power it is $$\left(1-\frac{1}{3n}\right)^n \le \left(\int_0^1 e^{-x^2/n} dx\right)^n \le \left(1-\frac{1}{3n}+\frac{1}{10n^2}\right)^n$$ Since the limit preserves non strict inequalities, it is $$\lim_{n\to\infty} \left(1-\frac{1}{3n}\right)^n\le \lim_{n \to \infty} \left(\int_0^1 e^{-x^2/n} dx\right)^n \le \lim_{n\to\infty} \left(1-\frac{1}{3n}+\frac{1}{10n^2}\right)^n$$ So, since for $n\to\infty$ it is $\left(1-\frac{1}{3n}\right)^n \to e^{-1/3}$ and $\left(1-\frac{1}{3n}+\frac{1}{10n^2}\right)^n \to e^{-1/3}$, for the squeeze theorem it follows that $$\lim_{n \to \infty} \left(\int_0^1 e^{-x^2/n} dx\right)^n=e^{-1/3}$$ Could this work? I am unsure about the use of the Taylor formula for $t \le 0$ and the various monotonicity arguments I made.