The equation of the line parallel to $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and intersecting the lines $9x + y + z + 4 = 0 = 5x + y + 3z$ & $x + 2y - 3z - 3 = 0 = 2x - 5y + 3z + 3$
My solution is as follow
$\frac{{x - a}}{2} = \frac{{y - b}}{3} = \frac{{z - c}}{4}$ represent the line parallel to $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and intersecting the line and intersecting the line ${L_1}:9x + y + z + 4 = 0 = 5x + y + 3z$ & ${L_2}:x + 2y - 3z - 3 = 0 = 2x - 5y + 3z + 3$
Let $\frac{{x - a}}{2} = \frac{{y - b}}{3} = \frac{{z - c}}{4} = {\lambda _i}$ where $\left( {x,y,z} \right) = \left( {a + 2{\lambda _i},b + 3{\lambda _i},c + 4{\lambda _i}} \right)$
$ \Rightarrow 9a + 18{\lambda _1} + b + 3{\lambda _1} + c + 4{\lambda _1} + 4 = 0 \Rightarrow \frac{{9a + b + c + 4}}{{ - 25}} = {\lambda _1}$ after putting the values in $L_1$
$5a + 10{\lambda _1} + b + 3{\lambda _1} + 3c + 12{\lambda _1} = 0 \Rightarrow \frac{{5a + b + 3c}}{{ - 25}} = {\lambda _1}$
$9a + b + c + 4 = 5a + b + 3c \Rightarrow 4a - 2c + 4 = 0$
${L_2}:x + 2y - 3z - 3 = 0 = 2x - 5y + 3z + 3$
$\left( {x,y,z} \right) = \left( {a + 2{\lambda _2},b + 3{\lambda _2},c + 4{\lambda _2}} \right)$
$a + 2{\lambda _2} + 2b + 6{\lambda _2} - 3c - 12{\lambda _2} - 3 = 0 = 2a + 4{\lambda _2} - 5b - 15{\lambda _2} + 3c + 12{\lambda _2} + 3$
$ \Rightarrow a + 2b - 3c - 3 - 4{\lambda _2} = 0 = 2a - 5b + 3c + 3 + {\lambda _2} \Rightarrow \frac{{a + 2b - 3c - 3}}{4} = {\lambda _2} = \frac{{2a - 5b + 3c + 3}}{{ - 1}}$
$ \Rightarrow a + 2b - 3c - 3 = - 8a + 20b - 12c - 12 \Rightarrow 9a - 18b + 9c + 9 = 0 \Rightarrow a - 2b + c + 1 = 0$
$ \Rightarrow a - 2b + c + 1 = 0\& 2a - c + 2 = 0$
Let $b = - 1 \Rightarrow a + c + 3 = 0\& 2a - c + 2 = 0 \Rightarrow c = - \frac{4}{3}\& a = - \frac{5}{3}$
$\frac{{x + \frac{5}{3}}}{2} = \frac{{y + 1}}{3} = \frac{{z + \frac{4}{3}}}{4} = \lambda \Rightarrow \left( {x,y,z} \right) = \left( { - \frac{5}{3}\hat i - \hat j - \frac{4}{3}\hat k} \right) + \lambda \left( {2\hat i + 3\hat j + 4\hat k} \right)$
But my answer is not matching. Can you tell me the error that I have made. Each steps is elaborated