If $A$ is a subspace of $X$ and $B$ is a subspace of $Y$, then the product topology on $A\times B$ is the same as the topology $A\times B$ inherits as a subspace of $X\times Y$.
Since I didn’t known the basis for subspace topology on $A\times B$, I tryed to show two topology are equal, i.e.$\mathcal{T}_{p}$(product topology on $A\times B$. Note talking about product topology makes sense, because set $A$ and $B$ are equipped with $\mathcal{T}_{A}$ and $\mathcal{T}_{B}$ topology, respectively)$=\mathcal{T}_{A\times B}$(subspace topology on $A\times B$)
My attempt: first I will show notation. $\mathcal{B}_{p}=\{ U\times V|U\in \mathcal{T}_{A}, V \in \mathcal{T}_{B}\}$. $\mathcal{T}_{p}$ is the topology generated by basis $\mathcal{B}_{p}$. $\mathscr{B}_{p}$ is basis for product topology on $X\times Y$. $\mathcal{T}_{A\times B}= \{ (A\times B)\cap Z| Z \in \mathcal{T}_{X\times Y}\}$, where $\mathcal{T}_{X\times Y}$ is the product topology on $X\times Y$. I know there is lots of notation to keep track of. If $R\in \mathcal{T}_{p}$, then $R=\bigcup_{i\in I}(U_i \times V_i)$, where $U_i\times V_i \in \mathcal{B}_{p}, \forall i \in I$ & $I$ is an indexing set. Since $U_i \times V_i \in \mathcal{B}_{p}$, we have $U_i\in \mathcal{T}_{A}$ and $V_i\in \mathcal{T}_{B}$. So $U_i=A\cap E_i$ & $V_i=B\cap F_i$, $E_i\in \mathcal{T}_{X} $ and $F_i \in \mathcal{T}_{Y}$. So $U_i \times V_i =(A\cap E_i)\times (B\cap F_i)= (A\times B)\cap (E_i \times F_i), \forall i \in I$. Since $E_i \times F_i \in \mathscr{B}_{p}$, $E_i \times F_i \in \mathscr{B}_{p} \subset \mathcal{T}_{X\times Y}, \forall i$. So $E_i \times F_i \in \mathcal{T}_{X\times Y}, \forall i$. So $\bigcup_{i\in I} (E_i \times F_i) \in \mathcal{T}_{X\times Y}$. Thus, $R=\bigcup_{i\in I}(U_i \times V_i)= (A\times B) \cap ( \bigcup_{i\in I} E_i \times F_i)\in \mathcal{T}_{A\times B}$. Hence $\mathcal{T}_{p} \subseteq \mathcal{T}_{A\times B}$.
Conversely, suppose $R\in \mathcal{T}_{A\times B}$. Then $R=(A\times B) \cap Z$; $Z \in \mathcal{T}_{X\times Y}$. $\forall (m,n)\in Z, \exists W_{(m,n)}\in \mathscr{B}_p$ such that $(m,n)\in W_{(m,n)}\subseteq Z$. So $Z = \bigcup_{(m,n)\in Z} W_{(m,n)}$. $R=(A\times B)\cap (\bigcup_{(m,n)\in Z} W_{(m,n)})= \bigcup_{(m,n)\in Z}[(A\times B)\cap (W_{(m,n)})]$. Let $W_{(m,n)}=U_{(m,n)}\times V_{(m,n)} \in \mathscr{B}_{p}$. So $R= \bigcup_{(m,n)\in Z}[(A\cap U_{(m,n)})\times (B\cap V_{(m,n)})]$. Since $U_{(m,n)}\in \mathcal{T}_{X}$ and $V_{(m,n)}\in \mathcal{T}_{Y}$, we have $A\cap U_{(m,n)}\in \mathcal{T}_{A}$ and $B\cap V_{(m,n)}\in \mathcal{T}_{B}$. Thus $(A\cap U_{(m,n)})\times (B\cap V_{(m,n)})\in \mathcal{B}_{p}, \forall (m,n)\in Z$. Hence $R$ is the arbitrary union of elements of $\mathcal{B}_{p}$. So $R\in \mathcal{T}_{p}$. Thus $\mathcal{T}_{A\times B} \subset \mathcal{T}_{p}$. We have our desired equality $\mathcal{T}_{A\times B} = \mathcal{T}_{p}$. Is this proof correct?
Question: What is the basis for subspace topology on $A\times B$? Is it the set itself? I don’t understand Munkres proof of, basis of product topology on $A\times B$ $\subseteq$ basis of subspace topology on $A\times B$.
Munkres’ Proof: $\mathcal{B}_{p} =\{ U\times V|U\in \mathcal{T}_{A}, V \in \mathcal{T}_{B}\}$(basis of product topology on$A\times B$) is equal to $\mathcal{B}_{s}=\{(A\times B) \cap O|O\in \mathcal{B}\}$(basis of subspace topology on $A\times B$), where $\mathcal{B}=\{ C\times D|C\in \mathcal{T}_{X}, D\in \mathcal{T}_{Y}\}$. We need to show that $\mathcal{B}_{p}= \mathcal{B}_{s}$. If $U’\in \mathcal{B}_{p}$, then $U’=U\times V$. So $U=A\cap M$ & $V=B\cap N$, where $M\in \mathcal{T}_{X}$ and $N\in \mathcal{T}_{Y}$. $U’=U\times V=(A\cap M)\times (B\cap N)=(A\times B)\cap (M\times N)\in \mathcal{B}_{s}$. Thus $\mathcal{B}_{p} \subseteq \mathcal{B}_{s}$.
Conversely, if $U’\in \mathcal{B}_{s}$, then $U’=(A\times B)\cap O$; $O\in \mathcal{B}$. So $U’=(A\times B)\cap (P\times Q)$, where $P\in \mathcal{T}_{X}$ & $Q\in \mathcal{T}_{Y}$. $U’=(A\cap P)\times (B\cap Q) \in \mathcal{B}_{p}$, since $(A\cap P)\in \mathcal{T}_{A}$ and $(B\cap Q)\in \mathcal{T}_{B}$. Hence $\mathcal{B}_{p} \supseteq \mathcal{B}_{s}$. Thus $\mathcal{B}_{p}= \mathcal{B}_{s}$. So topology generated by each basis are equal. Our desired result.