Dirac, Reference 1, pg 59, says
The most important property of $\delta(x)$ is exemplified by the following equation
\begin{equation*} \int_{-\infty}^\infty f(x) \delta(x) dx =f(0),~~~~~~~~~~~~~~~~~~~(3) \end{equation*}
What you might consider, as really going on here, is that the left hand side is a notation for a limiting process. We could replace the above with \begin{equation*} \lim_{\epsilon\to 0^+} \int_{-\infty}^\infty \delta_\epsilon(x) f(x) dx =f(0) \end{equation*} Where the variable $\epsilon$ is used by Dirac, see pg 58 of Reference 1, if you can
Using a variable '$t$' , rather than $\epsilon$, the real meaning of (3) might be taken to be represented by \begin{equation*} \lim_{t\to 0^+} \int_{-\infty}^\infty \delta_t(x) f(x) dx =f(0) \end{equation*} where, $$ \delta_t(x) = \left\{ \begin {array}{lr} \frac{1 }{2t } & \text{if} -t \leq x \leq t \\ 0 & \text{if } ~~~~~~|x|>t\\ \end{array} \right . $$
$ \delta_t(x) $ could be called a Top-Hat function ( t for Top-Hat) because of the shape of it's graph.
Define the function $G(t)$ by \begin{equation*} G(t)= \int_{-\infty}^\infty \delta_t(x) f(x) dx \end{equation*}
The idea of a limit of a function at a point is a "two-sided thing". For a number,'l', to be the limit of a function $G(t)$, at some point $t_0$, we have to be able to solve, for any positive $\epsilon$, however small
\begin{equation*} |G(t)-l|<\epsilon \end{equation*}
for't' values in some union of open intervals,
\begin{equation*} t \in (t_0-\delta,t_0) \cup (t_0,t_0+\delta) \end{equation*}
where in general the positively valued $\delta$ is a function of $\epsilon$.
In our case, there will exist, at best, a "one-sided limit".
What we need to show, put $t_0=0$, is that \begin{equation*} \lim_{t\to 0^+} \int_{-\infty}^\infty \delta_t(x) f(x) dx =f(0) \end{equation*} or
\begin{equation*} \lim_{t\to 0^+}G(t)=f(0) \end{equation*}
My question is, how do we show \begin{equation*} \lim_{t\to 0^+}G(t)=f(0) \end{equation*} using rigorous mathematics.
You might answer this question for complex valued functions $f(x)$, or restrict your answer to real-valued $f(x)$.
Reference
- P.A.M. Dirac, The Principles Of Quantum Mechanics 4th Ed., Clarendon Press, Oxford, 1958