I have the matrix $A$ below which is the permutations of $\{f_0,f_1,f_2,f_3\}$
\begin{equation*} A=\begin{bmatrix} f_0 & f_1 & f_2 & f_3 \\ f_0 & f_1 & f_3 & f_2 \\ f_0 & f_2 & f_1 & f_3 \\ f_0 & f_2 & f_3 & f_1 \\ f_0 & f_3 & f_1 & f_2 \\ f_0 & f_3 & f_2 & f_1 \\ f_1 & f_0 & f_2 & f_3 \\ f_1 & f_0 & f_3 & f_2 \\ f_1 & f_2 & f_0 & f_3 \\ f_1 & f_2 & f_3 & f_0 \\ f_1 & f_3 & f_0 & f_2 \\ f_1 & f_3 & f_2 & f_0 \\ f_2 & f_0 & f_1 & f_3 \\ f_2 & f_0 & f_3 & f_1 \\ f_2 & f_1 & f_0 & f_3 \\ f_2 & f_1 & f_3 & f_0 \\ f_2 & f_3 & f_0 & f_1 \\ f_2 & f_3 & f_1 & f_0 \\ f_3 & f_0 & f_1 & f_2 \\ f_3 & f_0 & f_2 & f_1 \\ f_3 & f_1 & f_0 & f_2 \\ f_3 & f_1 & f_2 & f_0 \\ f_3 & f_2 & f_0 & f_1 \\ f_3 & f_2 & f_1 & f_0 \end{bmatrix}\end{equation*}
From visual inspection, the sixth row can be constructed from a linear combination of the preceding five rows (i.e.: $f_0$ in column 1 is in each of the five proceeding rows, $f_3$ in column 2 is in the fifth row, etc). Similarly, rows 8,11,12,14-18 and 20-24 can be constructed from linear combinations of preceding rows.
I am trying to figure out how to present the text in the paragraph immediately above in a concise mathematical way (i.e.: that these 14 rows are a linear combination of preceding rows, or conversely the other 10 rows that are completely independent.