And yet another way for you to enjoy. Define
$$f(z):=\frac{\text{Log}\,z}{z^4+1}\;,\;\;C_R:=[-R,R]\cup\gamma_R:=\{z\in\Bbb C\;;\;z=Re^{it}\,,\,\,0<t<\pi\}\;,\;\;1<R\in\Bbb R$$
Now, the only poles within the region determined by $\,C_R\,$ are the simple (why? And note that $\,z=0\,$ is a pole but with residue equal to zero...) ones
$$z_1=e^{\frac{\pi i}4}\;,\;\;z_2=e^{\frac{3\pi i}4}\implies$$
$$\begin{align*}\text{Res}_{z=z_1}(f)&=\lim_{z\to z_1}(z-z_1)f(z)\stackrel{\text{l'Hospital}}=\lim_{z\to z_1}\frac{\text{Log}\,z}{4z^3}&=\frac{\pi i}{16e^{\frac{3\pi i}4}}&=\frac{\pi }{16\sqrt2}\left(1-i\right)=\\
\text{Res}_{z=z_2}(f)&=\lim_{z\to z_2}(z-z_2)f(z)\stackrel{\text{l'Hospital}}=\lim_{z\to z_2}\frac{\text{Log}\,z}{4z^3}&=\frac{3\pi i}{16e^{\frac{\pi i}4}}&=\frac{3\pi }{16\sqrt2}\left(1+i\right)\end{align*}$$
So by Cauchy Theorem we get:
$$2\pi i\left(\frac{\pi}{16\sqrt2}\left(1-i\right)+\frac{3\pi}{16\sqrt2}\left(1+i\right)\right)=-\frac{\pi^2}{4\sqrt2}=\oint\limits_{C_R}f(z)\,dz=\int\limits_{-R}^R\frac{dx}{x^4+1}+\int\limits_{\gamma_R}f(z)dz$$
And since
$$\left|\;\int\limits_{\gamma_R}f(z)dz\;\right|\le\frac{\pi R}{R^4-1}\xrightarrow[R\to\infty]{}0$$
we get
$$2\int\limits_0^\infty\frac{dx}{x^4+1}\stackrel{\text{why?}}=\int\limits_{-\infty}^\infty\frac1{x^4+1}=\lim_{R\to\infty}\int\limits_{C_R}f(z)\,dz=-\frac{\pi^2}{4\sqrt2}$$
Note: To do the above we had to choose a branch cut for the complex logarithm function, yet we didn't choose the usual one (i.e., the non-positive reals) but rather the negative purely imaginary axis, so...why can we do that?, and what happened with zero, the great nemesis of the complex logarithm?