Is my demonstration correct?
Let $f, g$ infinitely differentiable increasing functions. Suposse that:
$$\star \ \ \ \ \ f(0) = g(0) = 0 $$
$$\star \ \ \ \ \ f'(0) = g'(0) = 1 $$
$$\star \ \ \ \ \ \lim\limits_{x \rightarrow 0} \dfrac{f(x)}{x} = 1 $$
$$\star \ \ \ \ \ f(-x) = -f(x), g(-x) = -g(x) $$
$$\star \ \ \ \ \ f(x) \neq g(x) \ \ \ \forall x \neq 0 $$
So $$\lim\limits_{x \rightarrow 0}\dfrac{f(x) - g(x)}{g^{-1}(x) - f^{-1}(x)} = 1 $$
My possible demonstration: We can approximate f(x) next to $x_0$ by
$$(1) \ \ \ f(x) \approx f'(x_0)x + (f(x_0) - x_0f'(x_0)) = f'(x_0)x + b(x_0) $$
where $b(x_0) = (f(x_0) - x_0f'(x))$. Replacing x by $f^{-1}(x)$ in (1) we got:
$$(2) \ \ \ f^{-1}(x) = \dfrac{x - b(x_0)}{f'(x_0)} $$
(same about $g$, $g(x) = g'(x_0)x + (g(x_0) - x_0g'(x_0)) = g'(x_0)x + c(x_0))$,
so
$$\dfrac{f(x) - g(x)}{g^{-1}(x) - f^{-1}(x)} \approx \dfrac{f'(x_0)x + b(x_0) - (g'(x_0)x + c(x_0))}{\dfrac{x - c(x_0)}{g'(x_0)}-\dfrac{x - b(x_0)}{f'(x_0)}} $$
But $$\lim\limits_{x_0 \rightarrow 0} f'(x_0) = \lim\limits_{x_0 \rightarrow 0} g'(x_0) =1$$
So we got
$$\dfrac{f'(x_0)x + b(x_0) - (g'(x_0)x + c(x_0))}{\dfrac{x - c(x_0)}{g'(x_0)}-\dfrac{x - b(x_0)}{f'(x_0)}} \approx \dfrac{b(x_0) - c(x_0)}{-c(x_0) + b(x_0)} = 1$$
It's wrong? How can I be more accurate?
I want to prove for $f(x) = \sin(\tan(x)), g(x) = \tan(\sin(x))$, however, I believe it is possible to generalize as above