$\newcommand{\sgn}{\operatorname{sgn}}$
Note that
$$
|x-c|=\int_c^x\sgn(x-t)\,\mathrm{d}t\tag1
$$
Thus, for $b\gt a$,
$$
\begin{align}
&\int_{-\infty}^\infty|x-b|\,\mathrm{d}\mu(x)-\int_{-\infty}^\infty|x-a|\,\mathrm{d}\mu(x)\tag{2a}\\
&=\int_{-\infty}^\infty\int_b^x\sgn(x-t)\,\mathrm{d}t\,\mathrm{d}\mu(x)-\int_{-\infty}^\infty\int_a^x\sgn(x-t)\,\mathrm{d}t\,\mathrm{d}\mu(x)\tag{2b}\\
&=-\int_{-\infty}^\infty\int_a^b\sgn(x-t)\,\mathrm{d}t\,\mathrm{d}\mu(x)\tag{2c}\\
&=-\int_a^b\int_{-\infty}^\infty\sgn(x-t)\,\mathrm{d}\mu(x)\,\mathrm{d}t\tag{2d}\\
&=\int_a^b(\mu(-\infty,t)+\mu(-\infty,t]-1)\,\mathrm{d}t\tag{2e}
\end{align}
$$
Explanation:
$\text{(2b)}$: integrate $(1)$ against $\mathrm{d}\mu$
$\text{(2c)}$: $\int_b^xf(t)\,\mathrm{d}t-\int_a^xf(t)\,\mathrm{d}t=-\int_a^bf(t)\,\mathrm{d}t$
$\text{(2d)}$: Fubini's Theorem
$\text{(2e)}$: $\sgn(x-t)=1-[x\le t]-[x\lt t]\qquad$ (Iverson brackets)
Therefore, if $\mu(-\infty,b)+\mu(-\infty,b]\le1$, then
$$
\int_{-\infty}^\infty|x-b|\,\mathrm{d}\mu(x)-\int_{-\infty}^\infty|x-a|\,\mathrm{d}\mu(x)\le0\tag{3a}
$$
That is, $\int_{-\infty}^\infty|x-c|\,\mathrm{d}\mu(x)$ is decreasing when $\mu(-\infty,c)+\mu(-\infty,c]\le1$.
Furthermore, if $\mu(-\infty,a)+\mu(-\infty,a]\ge1$, then
$$
\int_{-\infty}^\infty|x-b|\,\mathrm{d}\mu(x)-\int_{-\infty}^\infty|x-a|\,\mathrm{d}\mu(x)\ge0\tag{3b}
$$
That is, $\int_{-\infty}^\infty|x-c|\,\mathrm{d}\mu(x)$ is increasing when $\mu(-\infty,c)+\mu(-\infty,c]\ge1$.
Thus, $\int_{-\infty}^\infty|x-c|\,\mathrm{d}\mu(x)$ is minimized when $\mu(-\infty,c)\le\frac12\le\mu(-\infty,c]$.