We have to show that $$\frac{d}{dx}a^x=a^x\log(a).$$
Proof: Recall that for any function $f(x)$, by definition, $$f'(x) =\lim _{h \to 0}\left(\frac{f(x+h)-f(x)}{h}\right), \forall f.$$ Let $f(x)=a^x$ s.t. $$\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h)-f(x)}{h}} \implies \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle x+h}-a^{\displaystyle x}}{h}}. $$ $$\implies \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle x} \times a^{\displaystyle h}-a^{\displaystyle x}}{h}}=\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \bigg(a^{\displaystyle x} \times \dfrac{a^{\displaystyle h}-1}{h}\bigg)}.$$ We can now evaluate $f'(x)$ by the constant multiple rule of calculus s.t. $$a^{\displaystyle x} \times\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle h}-1}{h}} \implies a^x\ln(a)$$ $$\therefore \forall f=a^x,f'(x)=a^x\ln(a)$$ Q.E.D
(Hint: set $y=a^x$, then take $ln$ of both sides, then take $\frac{d}{dx}$ of both sides. You'll end up with a $\frac{1}{y}\cdot \frac{dy}{dx} = \dots$ and then plug in for $y$ and simplify a bit and you're done!)
– mim Dec 22 '21 at 23:55