I`m trying to evaluate this series and would like to get some advice how to do that.
What I need to find here to start with?
$$\sum_{n=1}^{\infty}\frac{2n-1}{2^n}= \frac{1}{2} + \frac{3}{4}+\frac{5}{8}+\dots$$

- 9,675

- 3,136
4 Answers
Note that $$\dfrac{2n-1}{2^n} = \dfrac{n}{2^{n-1}} - \dfrac1{2^n}$$
Now make use of the following. For $\vert x \vert < 1$, we have $$\sum_{n=0}^{\infty} x^n = \dfrac1{1-x}$$ Differentiating both sides, we get that $$\sum_{n=0}^{\infty} nx^{n-1} = \dfrac1{(1-x)^2}$$ Take $x=1/2$ to get what you want.
Hints:
$$\begin{align*}\bullet&\;\;\;|x|<1\implies \sum_{n=0}^\infty x^n=\frac1{1-x}\;,\;\;\sum_{n=1}^\infty nx^{n-1}=\frac1{(1-x)^2}\\ \bullet&\;\;\;\frac{2n-1}{2^n}=n\frac1{2^{n-1}}-\frac1{2^n}\end{align*}$$

- 211,718
- 17
- 136
- 287
$$ \displaylines{ s = \sum\limits_{n = 1}^{ + \infty } {\frac{{2n - 1}}{{2^n }}} = \sum\limits_{n = 0}^{ + \infty } {\frac{{2n + 1}}{{2^{n + 1} }}} = \frac{1}{2}\sum\limits_{n = 0}^{ + \infty } {\frac{{2n + 1}}{{2^n }}} \cr \Leftrightarrow s = \frac{1}{2} + \frac{1}{2}\sum\limits_{n = 1}^{ + \infty } {\frac{{2n - 1}}{{2^n }}} + \frac{1}{2}\sum\limits_{n = 0}^{ + \infty } {\frac{2}{{2^{n + 1} }}} \cr \Leftrightarrow s - \frac{1}{2}s = \frac{1}{2} + \sum\limits_{n = 0}^{ + \infty } {\frac{1}{{2^{n + 1} }}} \cr \Leftrightarrow \frac{1}{2}s = \frac{1}{2} + \sum\limits_{n = 0}^{ + \infty } {\frac{1}{{2^{n + 1} }}} \quad \quad ;\quad \sum\limits_{n = 0}^{ + \infty } {\frac{1}{{2^{n + 1} }}} = \sum\limits_{n = 0}^{ + \infty } {\left( {\frac{1}{2}} \right)} ^{n + 1} = \frac{1}{2}\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{{\left( {\frac{1}{2}} \right)^{n + 1} - 1}}{{\left( {\frac{1}{2}} \right) - 1}}} \right) = 1 \cr \Leftrightarrow \frac{1}{2}s = \frac{1}{2} + 1 \cr \Leftrightarrow s = 3 \cr} $$

- 422
For $|r|<1$, there is the common geometric series: $$ \sum_{k=0}^\infty ar^k=\frac{a}{1-r} \overset{\times r}{\longrightarrow} \sum_{k=1}^\infty ar^k=\frac{ar}{1-r} $$ and its derivative with respect to $r$: $$ \sum_{k=0}^\infty akr^{k-1}=\frac{a}{(1-r)^2} \overset{\times r}{\longrightarrow} \sum_{k=1}^\infty akr^k=\frac{ar}{(1-r)^2} $$ Your series is a combination of these two.

- 345,667
$$\frac{1}{2^n} = \left( \frac{1}{2} \right)^n.$$
This is the geometric series which is what they are using to solve the problem. You should memorize the result for the geometric series and look for it in the problems you solve.
– Spencer Jul 01 '13 at 21:08