So I was trying to understand isomorphisms of ringed spaces, looking for a characterization of them. I'll explain what I've found out already and what I don't know yet. Before, I will set some notations and state the pushforward-pullback adjunction of sheaves along a continuous function.
If $X$ is a space and $\mathsf{C}$ is some category, we denote by $\mathsf{Sh}_\mathsf{C}(X)$ the category of $\mathsf{C}$-sheaves over $X$. In the following, we suppose $\mathsf{C}$ is cocomplete (i.e., it admits all colimits. But we may just assume $\mathsf{C}=\mathsf{Set}$ and consider only sheaves of sets, if that makes us more comfortable).
Let $Y$ be another space. If $f:X\to Y$ is a continuous map, there are functors $$f_*:\mathsf{Sh}_\mathsf{C}X\rightleftarrows\mathsf{Sh}_\mathsf{C}Y:f^*,$$ where $f_*$ (resp., $f^*$) is called the pushforward (resp., the pullback) along $f$ (see for example the section on continuous maps and sheaves of Stacks Project for reference. There on SP they actually denote $f^*$ as $f^{-1}$. In order for $f^*$ to exist, we need cocompleteness for $\mathsf{C}$).
There is an adjunction $$ \mathsf{Sh}_{\mathsf{C}}(X)(f^{*}\mathcal{G},\mathcal{F})\cong\mathsf{Sh}_{\mathsf{C}}(Y)(\mathcal{G}, f_*\mathcal{F}),\tag{1}\label{eq:adj} $$ where $\mathcal{F}\in\mathsf{Sh}_\mathsf{C}X$ and $\mathcal{G}\in\mathsf{Sh}_\mathsf{C}Y$ (for a reference, see the link above, specially Lemma 6.21.6 and comments between lemmas 6.21.4 and 6.21.5).
Characterization of isomorphisms of ringed spaces: Recall that a morphism of ringed spaces $(X,\mathcal{O}_X)\to(Y,\mathcal{O}_Y)$ can be specified in two ways: either in the form $(f,\psi^{\flat})$ or $(f,\psi^\sharp)$, where $\psi^\flat$ and $\psi^\sharp$ are adjunct. We say that $(f,\psi^{\flat})$ is an isomorphism if there exists $(g,\varphi^{\flat}):(Y,\mathcal{O}_Y)\to(X,\mathcal{O}_X)$ such that $(g,\varphi^\flat)\circ(f,\psi^\flat)=1_{(X,\mathcal{O}_X)}$ and $(f,\psi^\flat)\circ(g,\varphi^\flat)=1_{(Y,\mathcal{O}_Y)}$ (see this question to understand how to compose morphisms of ringed spaces). In a similar fashion, it is possible to define what it means for $(f,\psi^\sharp)$ to be an isomorphism. I am interested in showing the proving result:
Proposition. Let $(f,\psi^\flat)$ or $(f,\psi^\sharp):(X,\mathcal{O}_X)\to(Y,\mathcal{O}_Y)$ be a morphism of ringed spaces. The following are equivalent:
- $(f,\psi^\flat)$ is an isomorphism.
- $f$ is a homeomorphism and $\psi^\flat$ is an isomorphism of sheaves.
- $(f,\psi^\sharp)$ is an isomorphism.
- $f$ is a homeomorphism and $\psi^\sharp$ is an isomorphism of sheaves.
Furthermore, in the case these equivalent statements hold, we have $$ (f,\psi^\flat)^{-1}=(f^{-1},(f^{-1})_*[(\psi^\flat)^{-1}])\\ (f,\psi^\sharp)^{-1}=(f^{-1},(f^{-1})^*[(\psi^\sharp)^{-1}]), $$ where $g_*$ denote the pushforward and $g^*$ the pullback of sheaves along the continuous function $g$ (which is a functor between some sheaves categories).
The implication $(1\Rightarrow 2)$ should be clear. For a proof of $(2\Rightarrow 1)$, see for example this answer. Equivalence $(3\Leftrightarrow 4)$ can also be proven by an analogous argument (for $(4\Rightarrow 3)$, one must also note that, from the definition of the pullback of sheaves, if $f$ is a homeomorphism then we have $f^*\mathcal{O}(U)=\mathcal{O}_Y(f(U))$, for $U\subset X$ open). On the other hand, the proofs of the formulas of the inverses of $(f,\psi^\flat)$ and $(f,\psi^\sharp)$ are an immediate computation using the fact that an inverse is unique, and the facts that $h_*$ and $h^*$ are functors and that the assignments $h\mapsto h_*$ and $h\mapsto h^*$ are functorial.
But I was having trouble showing ([$1$ or $2$] $\Leftrightarrow$ [$3$ or $4$]). Does anyone know how to prove this?