$$\underbrace{\int_{}^{}\sqrt{\frac{x-1}{x+1}}\,dx=4\int\frac{t^2}{\left(1-t^2\right)^2}\,dt}_\text{I want to derive RHS from LHS}~~\text{where}~~~t:=\sqrt{\frac{x-1}{x+1}}\tag{1}$$
$$x\neq-1\tag{2}$$
$$A:=\int_{}^{}\sqrt{\frac{x-1}{x+1}}\,dx\tag{3}$$
$$t=\sqrt{\frac{x-1}{x+1}}\tag{4}$$
$$=\frac{\sqrt{x-1}}{\sqrt{x+1}}\tag{5}$$
$$t^2=\frac{x-1}{x+1}\tag{6}$$
$$\underbrace{\left(x+1\right)t^2=\left(x-1\right)}_{\text{I will}~\frac{d}{dx}~\text{each formula}}~\tag{7}$$
$$\frac{d}{dx}\left(\left(x+1\right)t^2\right)=\frac{d}{dx}\left(\left(x-1\right)\right)\tag{8}$$
$$t^2+\left(x+1\right)\frac{d}{dx}\left(t^2\right)=1\tag{9}$$
$$t^2+\left(x+1\right)2t\frac{dt}{dx}=1\tag{10}$$
$$2t\left(x+1\right)\frac{dt}{dx}=1-t^2\tag{11}$$
$$\frac{dt}{dx}=\frac{1-t^2}{2t\left(x+1\right)}\tag{12}$$
$$A=\int_{}^{}\sqrt{\frac{x-1}{x+1}}\,dx\tag{13}$$
$$\frac{dx}{dt}=\frac{2t\left(x+1\right)}{\left(1-t^2\right)}\tag{14}$$
$$dx=\frac{2t\left(x+1\right)}{\left(1-t^2\right)}dt\tag{15}$$
$$\therefore~~A=\int_{}^{}\frac{\sqrt{x-1}}{\sqrt{x+1}}\cdot\frac{2t\left(x+1\right)}{\left(1-t^2\right)}\,dt\tag{16}$$
$$=2\int_{}^{}\frac{t\sqrt{x-1}}{\left(1-t^2\right)}\frac{\left(x+1\right)}{\sqrt{x+1}}\,dt\tag{17}$$
$$=2\int_{}^{}\frac{t}{1-t^2}\cdot\frac{\sqrt{x-1}}{1}\cdot\frac{\left(x+1\right)}{\sqrt{x+1}}\cdot\frac{\sqrt{x+1}}{\sqrt{x+1}}\,dt\tag{18}$$
$$=2\int_{}^{}\frac{t}{1-t^2}\cdot\frac{\sqrt{x-1}}{1}\cdot\sqrt{x+1}\,dt\tag{19}$$
$$=2\int_{}^{}\frac{t}{1-t^2}\cdot\sqrt{x^2-1}\,dt\tag{20}$$
How should I handle$~\sqrt{x^2-1}~$?
ADD
After read this almost same problem, I've got the following.
$$x=\frac{\left(1+t^2\right)}{\left(1-t^2\right)}\tag{21}$$
$$x=\left(1+t^2\right)\left(1-t^2\right)^{-1}\tag{22}$$
$$\frac{dx}{dt}=\left(2t\right)\left(1-t^2\right)^{-1}+\left(1+t^2\right)\left(-1\right)\left(1-t^2\right)^{-2}\left(-2t\right)\frac{dt}{dx}\tag{23}$$
Stuked again from here.
ADD2
After read commentary of Gary, I got the following WIP.
$$\sqrt{x^2-1}\tag{24}$$
$$=\sqrt{\left(\frac{1+t^2}{1-t^2}\right)^2-1}\tag{25}$$
$$\sqrt{\frac{\left(1+t^2\right)^2}{\left(1-t^2\right)^2}-1}\tag{26}$$
$$=\sqrt{\frac{\left(1+t^2\right)^2-\left(1-t^2\right)^2}{\left(1-t^2\right)^2}}\tag{27}$$
$$=\sqrt{\frac{\left(t^2+1\right)^{2}-\left(t^2-1\right)^{2}}{\left(t^2-1\right)^2}}\tag{28}$$
$$=\frac{1}{\sqrt{\left(t^2-1\right)^{2}}}\cdot\sqrt{\left(t^2+1\right)^2-\left(t^2-1\right)^2}\tag{29}$$
$$=\frac{1}{\left|t^2-1\right|}\cdot\sqrt{t^4+2t^2+1-\left(t^4-2t^2+1\right)}\tag{30}$$
$$=\frac{1}{\left|t^2-1\right|}\cdot\sqrt{t^4+2t^2+1-t^4+2t^2-1}\tag{31}$$
$$=\frac{1}{\left|t^2-1\right|}\sqrt{4t^2}\tag{32}$$
$$=\frac{\sqrt{4}\sqrt{t^2}}{\left|t^2-1\right|}\tag{33}$$
$$=\frac{2\left|t\right|}{\left|t^2-1\right|}=:B\tag{34}$$
$$t^2\leq1~~\leftarrow~~\because\text{proof by contradiction}\tag{35}$$
$$\therefore~~B=\frac{2\left|t\right|}{1-t^2}\tag{36}$$
The remaining problem is to prove why absolute signs can be removed above.
I think I solved it WIP