$\require{extpfeil}\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ Prove that if $\pi\in S_n,n\ge3$ and $\forall\sigma\in S_n, \pi\sigma=\sigma\pi$, then $\pi=e$.
How I did it:
Let $\pi\ne e\Rightarrow\exists i_1,i_2\in\overline{1,n},i_1\ne i_2$ s.t. $\pi(i_1)=i_2,\pi(i_2)=a\in\overline{1,n}$
Let $\sigma\in S_n$ s.t. $\sigma(i_1)=i_2, \sigma(i_2)=b\in\overline{1,n}$ with the condition that $a\ne b$.
$\pi\sigma(i_1)=a,\sigma\pi(i_1)=b\xRightarrow{a\ne b}\pi\sigma(i_1)\ne\sigma\pi(i_1)\Rightarrow\pi\sigma\ne\sigma\pi$
We proved that for $n\ge 3,\pi\ne e\implies \exists\sigma\in S_n$ s.t. $\pi\sigma\ne\sigma\pi$. The proposition is equivalent to $\forall\sigma\in S_n,\pi\sigma=\sigma\pi\implies\pi=e$ which is what we have to prove.
Now, is there an easier and more intuitive solution?