This is similar to Robert Lee's answer, but a bit more self-contained:
$$
\begin{align}
\int_0^\infty\frac{e^{-ax-\frac{b}{x}}}{x^{3/2}}\,\mathrm{d}x
&=2\left(\frac ab\right)^{1/4}\int_0^\infty\frac{e^{-\sqrt{ab}\left(x^2+\frac1{x^2}\right)}}{x^2}\,\mathrm{d}x\tag1\\
&=2\left(\frac ab\right)^{1/4}e^{-2\sqrt{ab}}\int_0^\infty\frac{e^{-\sqrt{ab}\left(x-\frac1x\right)^2}}{x^2}\,\mathrm{d}x\tag2\\
&=2\left(\frac ab\right)^{1/4}e^{-2\sqrt{ab}}\int_0^\infty e^{-\sqrt{ab}\left(x-\frac1x\right)^2}\,\mathrm{d}x\tag3\\
&=\left(\frac ab\right)^{1/4}e^{-2\sqrt{ab}}\int_0^\infty e^{-\sqrt{ab}\left(x-\frac1x\right)^2}\,\mathrm{d}\!\left(x-\tfrac1x\right)\tag4\\
&=\left(\frac ab\right)^{1/4}e^{-2\sqrt{ab}}\int_{-\infty}^\infty e^{-\sqrt{ab}\,u^2}\,\mathrm{d}u\tag5\\
&=\sqrt{\frac\pi{b}}\,e^{-2\sqrt{ab}}\tag6\\
\end{align}
$$
Explanation:
$(1)$: substitute $x\mapsto\sqrt{\frac ba}\,x^2$
$(2)$: complete the square
$(3)$: substitute $x\mapsto\frac1x$
$(4)$: average $(2)$ and $(3)$
$(5)$: substitute $u=x-\frac1x$
$(6)$: $\int_{-\infty}^\infty e^{-\lambda x^2}\,\mathrm{d}x=\sqrt{\frac\pi\lambda}$