Yes, this is an application of Jensen's inequality.
Jensen's Inequality: Given a random vector $X$ and a convex function $f$, we have that $f(\mathbb{E}[X]) \leq \mathbb{E}[ f(X) ]$.
You'll need the fact that the function $f(x_1, x_2, \dots x_n) = \max(x_1, x_2, \dots x_n)$ is convex, which is described here.
Using this, we can show that
\begin{align}
\max \left( \mathbb{E}[\epsilon_1], \mathbb{E}[\epsilon_2] \dots \mathbb{E}[\epsilon_n] \right)
= f(\mathbb{E}[\epsilon])
\leq \left( \mathbb{E}[f(\epsilon)] \right)
= \mathbb{E} \left[ \max \left( \epsilon_1, \epsilon_2, \dots \epsilon_n \right) \right]
\enspace.
\end{align}
And thus, if $\mathbb{E} \left[ \max \left( \epsilon_1, \epsilon_2, \dots \epsilon_n \right) \right] < \infty$, then this implies $\max \left( \mathbb{E}[\epsilon_1], \mathbb{E}[\epsilon_2] \dots \mathbb{E}[\epsilon_n] \right) < \infty$.