$$A=\begin{pmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & a \end{pmatrix}$$
I have tried it in like $(a-b)I_n + bJ_n$, where $I_n$ is the identity matrix and $J_n$ is a matrix with all elements equal to $1$, form... I want to do that in a simpler way...