We know that $a-b\geq1$. I'm trying to show that $$\sum_{k=1}^{a-b}\frac{(a-b-k)!}{(a+1-k)!}=\frac{a!-b!(a-b)!}{ba!b!}.$$ So I was thinking, starting from the LHS, if we set $a-b=n$, then we have $$\sum_{k=1}^{n}\frac{(n-k)!}{(n+b+1-k)!}.$$ We can make it simpler by setting $n-k=m-1$. This way, if I'm not mistaken, we can write $$\sum_{m=1}^{n}\frac{(m-1)!}{(m+b)!}.$$ But now what? Were these calculations even useful? Can anyone please guide me?
3 Answers
We show the following identity for positive integers $a,b$ with $a-b\geq 1$ is valid: \begin{align*} \color{blue}{\sum_{k=1}^{a-b}\frac{(a-b-k)!}{(a+1-k)!}=\frac{1}{b\cdot b!}-\frac{(a-b)!}{b\cdot a!}}\tag{1} \end{align*}
We show (1) by writing the summands as reciprocal binomial coefficient $\binom{n}{k}^{-1}$. For non-negative values $n\geq k$ we have the nice integral representation \begin{align*} \binom{n}{k}^{-1}=(n+1)\int_{0}^1z^k(1-z)^{n-k}\,dz\tag{2} \end{align*}
We obtain \begin{align*} \color{blue}{\sum_{k=1}^{a-b}}&\color{blue}{\frac{(a-b-k)!}{(a+1-k)!}} =\sum_{k=1}^{a-b}\frac{(k-1)!}{(b+k)!}\tag{3.1}\\ &=\frac{1}{(b+1)!}\sum_{k=1}^{a-b}\binom{b+k}{k-1}^{-1}\tag{3.2}\\ &=\frac{1}{(b+1)!}\sum_{k=1}^{a-b}(b+k+1)\int_0^1z^{k-1}(1-z)^{b+1}\,dz\tag{3.3}\\ &=\frac{1}{b!}\int_{0}^{1}(1-z)^{b+1}\sum_{k=1}^{a-b}z^{k-1}\,dz\\ &\qquad+\frac{1}{(b+1)!}\int_{0}^{1}(1-z)^{b+1}\sum_{k=1}^{a-b}kz^{k-1}\,dz\\ &=\frac{1}{b!}\int_{0}^{1}(1-z)^{b}\left(1-z^{a-b}\right)\,dz\\ &\qquad+\frac{1}{(b+1)!}\int_{0}^{1}(1-z)^{b+1}\left(\frac{d}{dz}\sum_{k=1}^{a-b}z^k\right)\,dz\tag{3.4}\\ &=\frac{1}{b!}\left(\frac{1}{b+1}-\int_{0}^{1}z^{a-b}(1-z)^b\,dz\right)\\ &\qquad+\frac{1}{(b+1)!}\int_{0}^{1}(1-z)^{b+1}\left(\frac{d}{dz}\left(\frac{z\left(1-z^{a-b}\right)}{1-z}\right)\right)dz\\ &=\frac{1}{b!}\left(\frac{1}{b+1}-\frac{(a-b)!b!}{(a+1)!}\right)+\frac{1}{(b+1)!}\int_{0}^{1}(1-z)^{b+1}\\ &\qquad\qquad\cdot\left(\frac{1}{1-z}-\frac{(a-b+1)z^{a-b}}{1-z}+\frac{z\left(1-z^{a-b}\right)}{(1-z)^2}\right)dz\tag{3.5}\\ &=\frac{1}{(b+1)!}-\frac{(a-b)!}{(a+1)!}+\frac{1}{(b+1)!}\int_{0}^1(1-z)^b\,dz\\ &\qquad-\frac{a-b+1}{(b+1)!}\int_{0}^{1}z^{a-b}(1-z)^b\,dz+\frac{1}{(b+1)!}\int_{0}^{1}z(1-z)^{b-1}\,dz\\ &\qquad-\frac{1}{(b+1)!}\int_{0}^1z^{a-b+1}(1-z)^{b-1}\,dz\\ &=\frac{1}{(b+1)!}-\frac{(a-b)!}{(a+1)!}+\frac{1}{(b+1)!}\,\frac{1}{b+1}\\ &\qquad-\frac{a-b+1}{(b+1)!}\,\frac{(a-b)!b!}{(a+1)!}+\frac{1}{(b+1)!}\,\frac{1}{b(b+1)}\\ &\qquad-\frac{1}{(b+1)!}\,\frac{(a-b+1)!(b-1)!}{(a+1)!}\tag{3.6}\\ &=\frac{1}{(b+1)!}\left(1+\frac{1}{b+1}+\frac{1}{b(b+1)}\right)\\ &\qquad-\frac{(a-b)!}{(a+1)!}\left(1+\frac{a-b+1}{b+1}+\frac{a-b+1}{b(b+1)}\right)\tag{3.7}\\ &=\frac{1}{(b+1)!}\,\frac{b^2+2b+1}{b(b+1)}\\ &\qquad-\frac{(a-b)}{(a+1)!}\,\frac{\left(b^2+b\right)+\left(ab-b^2+b\right)+\left(a-b+1\right)}{b(b+1)}\\ &=\frac{1}{b\,b!}-\frac{(a-b)!}{(a+1)!}\,\frac{(b+1)(a+1)}{b(b+1)}\\ &\,\,\color{blue}{=\frac{1}{b\cdot b!}-\frac{(a-b)!}{b\cdot a!}} \end{align*} and the claim (1) follows.
Comment:
In (3.1) we change the order of summation $k\to a-b-k+1$.
In (3.2) we expand numerator and denominator with $(b+1)!$ and write the terms as binomial coefficients.
In (3.3) we apply the identity (2).
In (3.4) we apply the finite geometric sum formula in the left-hand integral, cancel the factor $1-z$. In the right-hand integral we write the sum using the differential operator $\frac{d}{dx}$ to conveniently prepare the next finite geometric series expansion which is done in the next step.
In (3.5) we do the differentiation and split the integrals in the next step.
In (3.5) and (3.6) we use an identity of the Beta function in the form \begin{align*} \int_{0}^1z^a(1-z)^b &= B(a+1,b+1)=\frac{\Gamma(a+1)\Gamma(b+1)}{\Gamma(a+b+2)}\\ &=\frac{a!b!}{(a+b+1)!} \end{align*} and calculate also the other integrals.
In (3.7) and the following lines we collect terms and simplify.

- 108,315
-
1Interesting problem. (+1). – Marko Riedel Dec 10 '21 at 01:20
We seek to show that
$$\sum_{k=1}^{a-b} \frac{(a-b-k)!}{(a+1-k)!} = \frac{1}{b} \left[\frac{1}{b!}-\frac{(a-b)!}{a!}\right]$$
Recall from MSE 4316307 the following identity which was proved there: with $1\le k\le n$
$${n\choose k}^{-1} = k [z^n] \log\frac{1}{1-z} (-1)^{n-k} (1-z)^{n-k}.$$
We thus have with positive integers $a,b$ where $a-b\ge 1$ that
$$\sum_{k=1}^{a-b} \frac{(a-b-k)!}{(a+1-k)!} = \sum_{k=0}^{a-b-1} \frac{k!}{(b+1+k)!} = \frac{1}{(b+1)!} \sum_{k=0}^{a-b-1} {b+1+k\choose k}^{-1} \\ = \frac{1}{(b+1)!} + \frac{1}{(b+1)!} \sum_{k=1}^{a-b-1} {b+1+k\choose k}^{-1} \\ = \frac{1}{(b+1)!} + \frac{1}{(b+1)!} \sum_{k=1}^{a-b-1} k [z^{b+1+k}] \log\frac{1}{1-z} (-1)^{b+1} (1-z)^{b+1}.$$
We may lower $k$ to zero because there is zero contribution and get for the sum term
$$\sum_{k=0}^{a-b-1} k [z^{b+1+k}] \log\frac{1}{1-z} (-1)^{b+1} (1-z)^{b+1} \\ = \sum_{k=b+1}^a (k-(b+1)) [z^k] \log\frac{1}{1-z} (-1)^{b+1} (1-z)^{b+1}.$$
Two pieces
We thus require two pieces, the first is
$$[w^m] \frac{1}{1-w} \sum_{k\ge 0} w^k k [z^k] \log\frac{1}{1-z} (-1)^{b+1} (1-z)^{b+1}.$$
This is
$$[w^{m-1}] \frac{1}{1-w} \left.\left( \log\frac{1}{1-z} (z-1)^{b+1} \right)'\right|_{z=w} \\ = [w^{m-1}] \frac{1}{1-w} \left.\left(- (z-1)^b + (b+1) \log\frac{1}{1-z} (z-1)^b\right) \right|_{z=w} \\ = [w^{m-1}] \left(((w-1)^{b-1} - (b+1) \log\frac{1}{1-w} (w-1)^{b-1}\right).$$
The second main piece is
$$- (b+1) [w^m] \frac{1}{1-w} \sum_{k\ge 0} w^k [z^k] \log\frac{1}{1-z} (-1)^{b+1} (1-z)^{b+1} \\ = (b+1) [w^m] \log\frac{1}{1-w} (w-1)^b.$$
Evaluating the pieces at $m=a$ and $m=b$
Evaluating at $m=a$ and $m=b$ we get for the first one
$$- \frac{b+1}{a-b} {a-1\choose a-b}^{-1}$$
and the second one
$$1 - (b+1) [w^{b-1}] \log\frac{1}{1-w} (w-1)^{b-1}.$$
Evaluate the second piece again at $m=a$ and $m=b$ we find
$$\frac{b+1}{a-b} {a\choose a-b}^{-1}$$
and
$$(b+1) [w^b] \log\frac{1}{1-w} (w-1)^b.$$
We evidently require
$$(-1)^b \; \underset{w}{\mathrm{res}} \; \frac{1}{w^{b+1}} (1-w)^b \log\frac{1}{1-w}$$
This was also evaluated at the cited link and found to be $-H_b.$
Collecting everything
We obtain at last for the sum component
$$- \frac{b+1}{a-b} {a-1\choose a-b}^{-1} -1 - (b+1) H_{b-1} + \frac{b+1}{a-b} {a\choose a-b}^{-1} + (b+1) H_b \\ = \frac{1}{b} - \frac{b+1}{a-b} {a\choose b}^{-1} \frac{a}{b} + \frac{b+1}{a-b} {a\choose b}^{-1} = \frac{1}{b} + \frac{b+1}{a-b} {a\choose b}^{-1} \frac{b-a}{b}.$$
We get for the complete sum
$$\frac{1}{(b+1)!} + \frac{1}{b\times (b+1)!} - \frac{(a-b)!}{b\times a!},$$
which is the claim.

- 61,317
As you mentioned, we can change the summation index with $k=a-b+1-n$ and write the sum as $$\sum_{n=1}^{a-b}\frac{(n-1)!}{(n+b)!} $$ Then, fix $b$ and prove the claim by induction on $a$. Given the restriction $a\ge b+1$, the base case is $a=b+1$. For the inductive step, you'd have $$\sum_{n=1}^{a-b+1}\frac{(n-1)!}{(n+b)!}=\sum_{n=1}^{a-b}\frac{(n-1)!}{(n+b)!}+\frac{(a-b)!}{(a+1)!} $$ Use the induction hypothesis and simplify. I hope you can take it from here.

- 6,787