Let $(a_{n})_{n\geqslant 1}$ be a sequence defined by
$$a_{n}=\frac{\ln(n+1)}{cn},\quad c\in \mathbb{R}_{+}^{*}$$
By definition,
$$a_{n}\underset{n\to +\infty}{\sim }\ell \iff \forall \varepsilon>0\exists N\in \mathbb{N}, n\geqslant N:\quad |a_{n}-\ell|<\varepsilon. $$
that is,
$$\frac{\ln(n+1)}{cn}\underset{n\to +\infty}{\sim }0 \iff \forall \varepsilon>0\exists N\in \mathbb{N}, n\geqslant N:\quad \left|\frac{\ln(n+1)}{cn}-0\right|<\varepsilon. $$
Since that
$$\left|\frac{\ln(n+1)}{cn}-0\right|=\left|\frac{\ln(n+1)}{cn} \right|\leqslant \left|\frac{n+1}{cn}\right|=\frac{n+1}{cn}<\varepsilon \iff n>\frac{1}{c(\varepsilon-\frac{1}{c})}$$
Therefore,
Let $\varepsilon>0$ and $N\in\mathbb{N}$ such that $n>\frac{1}{c\left(\varepsilon-\frac{1}{c}\right)}$ with $c\in \mathbb{R}_{+}^{*}$. Then for all $n\in \mathbb{N}$ such that $n\geqslant N$, we have
$$\left|\frac{\ln(n+1)}{cn}-0 \right|=\left|\frac{\ln(n+1)}{cn} \right|\leqslant \left| \frac{n+1}{cn}\right|=\frac{n+1}{cn}=\frac{1}{c}+\frac{1}{cn}<\frac{1}{c}+\varepsilon-\frac{1}{c}=\varepsilon.$$
Note: We know that for all $x\in \mathbb{R}_{+}^{*}$ we have that
$$\frac{x-1}{x}\leqslant \ln(x)\leqslant x-1.$$
Reference: For all $x\in \mathbb{R}_{+}^{*}$ we have $\frac{x-1}{x}\leqslant \ln(x)\leqslant x-1$.