Hi it's a upper bound for New bound for Am-Gm of 2 variables :
Problem :
Let $0<a\leq 1$ and $x\geq 1$ such that $2\leq a+x\leq 5$ then (dis)prove :
$$\left(1+\frac{1}{x+a}\left(\frac{4\left(x+a\right)^{2}}{\left(x+a+2\right)^{2}}-1\right)\right)\left(x+a-\frac{2\left(x+a\right)}{\left(x+a+2\right)}\right)-\left(ax\right)^{\frac{1}{x+a}}x^{\frac{x}{x+a}}a^{\frac{a}{a+x}}\geq0$$
In the link above you can find a proof for the lower bound .
If true i have tried to use Bernoulli's inequality wich is more than unsufficient .
Edit : Playing with Taylor series and improving it manually we have :
$$x+\ln\left(ax\right)-a\ln\left(x\right)+a\ln\left(a\right)+\frac{1-a}{x}+\frac{1}{92.95}\left(\frac{1-a}{x}\right)^{2}\simeq \left(ax\right)^{\frac{1}{a+x}}x^{\frac{x}{a+x}}a^{\frac{a}{a+x}}$$
For $0.75\leq a \leq 1$ and $x\geq 1$ wich is a good approximation but in reality unsufficient .
Edit 2:
Let $1\leq x\leq 2$ and $0.5\leq a \leq 1$ then it seems we have :
$$\frac{d}{dx}\left(\frac{d}{dx}g\left(x\right)\right)\geq 0$$
Where :
$$g\left(x\right)=\left(ax\right)^{\frac{1}{x+a}}x^{\frac{x}{x+a}}a^{\frac{a}{a+x}}$$
We can try to show the convexity using :
for $a,x>0$:
$$2\left(a+x\right)\ln\frac{a+x}{2}-\left(a+1\right)\ln a-\left(x+1\right)\ln x\geq 0$$
And :
$$a\ln a+x\ln x-\left(a+x\right)\ln\left(a+x-\sqrt{ax}\right)\geq 0$$
Using this supposition and using a chord on $g(x)$ we have for $x\in[1,2-a]$ and $0.5\leq a\leq 1$ :
$$g(x)\leq x+a-1$$
The rest seems easy .
Last edit :
Using directly differentiation and logarithm and multiplying by $x+a$:
We have using WA :
$$\frac{\left(12-7\left(a+x\right)^{2}\right)}{\left(a+x\right)^{2}\left(a+x+7\right)-4}+\frac{6}{a+x+2}+\ln\left(\frac{\left(a+x\right)\left(\left(a+x\right)^{2}\left(a+x+7\right)-4\right)}{\left(a+x+2\right)^{3}}\right)-\frac{1}{x}-\ln\left(x\right)$$
We can replace $-\frac{1}{x}$ by $\frac{-2}{a+x}$ and $-\ln\left(x\right)$ by $-\ln\left(0.5(x+a)\right)$ around the zero of the derivative
Now it's a single variable inequality in $x+a$
Question :
How to (dis)prove it ?