I have 18 elements (2a, 2b, 2c, 3d, 4e, 5f)
that I need to distribute into 6 unordered groups of 3.
I want to now the number of unique combinations I can make with those rules.
I read various website but as of now I only find way to measure the combination of 18 different elements into 6 group of 3
$$x=(18!/15!)\times(15!/12!)\times(12!/9!)\times(9!/6!)\times(6!/3!)\times(3!/1!)$$
(or in Excel format)
=(FACT(18)/FACT(15))*(FACT(15)/FACT(12))*(FACT(12)/FACT(9))*(FACT(9)/FACT(6))*(FACT(6)/FACT(3))*(FACT(3)/FACT(1))
And I’m not even sure of what I did :D
Thanks a lot for your help
--- progress ---
Following @Bulbasaur link advices, the Mathematical formula should be
$$ F_{\text{group1}}(u,v,w,x,y,z)=\sum_{\substack{i,j,k,l,m,n \,\ge \,0,\\ i+j+k+l+m+n=2}} u^iv^jw^kx^ly^mz^n $$
$$ F_{\text{group2}}(u,v,w,x,y,z)=\sum_{\substack{i,j,k,l,m,n \,\ge \,0,\\ i+j+k+l+m+n=2}} u^iv^jw^kx^ly^mz^n $$
$$ F_{\text{group3}}(u,v,w,x,y,z)=\sum_{\substack{i,j,k,l,m,n \,\ge \,0,\\ i+j+k+l+m+n=2}} u^iv^jw^kx^ly^mz^n $$
$$ F_{\text{group4}}(u,v,w,x,y,z)=\sum_{\substack{i,j,k,l,m,n \,\ge \,0,\\ i+j+k+l+m+n=3}} u^iv^jw^kx^ly^mz^n $$
$$ F_{\text{group5}}(u,v,w,x,y,z)=\sum_{\substack{i,j,k,l,m,n \,\ge \,0,\\ i+j+k+l+m+n=4}} u^iv^jw^kx^ly^mz^n $$
$$ F_{\text{group6}}(u,v,w,x,y,z)=\sum_{\substack{i,j,k,l,m,n \,\ge \,0,\\ i+j+k+l+m+n=5}} u^iv^jw^kx^ly^mz^n $$
$$ \text{# ways}=[u^3v^3w^3x^3y^3z^3](F_{\text{group1}}\times F_{\text{group2}}\times F_{\text{group3}}\times F_{\text{group4}}\times F_{\text{group5}}\times F_{\text{group6}}) $$
I now have two questions: first, is this formula correct (and efficient)? Second, how do I calculate it? (I’m a designer so I usually do this kind of thing in Excel :D )
Thanks for you help
Just for context: I’m a designer, so my last Math teaches were 10 years ago. I’ve spend my afternoon yesterday to find the formula above…
– DomitienAW Dec 03 '21 at 12:28