Let $\psi(z)$ be the digamma function.
The integral $$\int_{0}^{1} \frac{\ln(1+x^{2})}{1+x^{2}} \, \mathrm dx = -2 \int_{0}^{\pi/4} \log(\cos u) \, \mathrm du$$ can be evaluated in several ways. See this question for example.
But if you want to evaluate the series in a way that doesn't involve that integral, you could integrate the meromorphic function $$f(z) = \frac{\pi \csc(\pi z)\left(\psi(-z)+ \gamma \right)}{2z+1}$$ around a rectangular contour $C_{N}$ with vertices at $z = \pm (N+ \frac{1}{2}) \pm i \sqrt{N} $, where $N$ is a positive integer.
The function has double poles at the nonnegative integers, simple poles at the negative integers, and a simple pole at $z= - \frac{1}{2}$.
On the contour, the magnitude of $\psi(-z)$ grows slowly like $\ln|z|$ as $N \to \infty$.
This, combined with the fact that the magnitude of $\csc(\pi z)$ decays exponentially to zero as $\Im(z) \to \pm \infty$, means the integral will vanish on the contour as $N \to \infty$.
Therefore, we get $$ \lim_{N \to \infty} \int_{C_{N}} f(z) \, \mathrm dz = 0 = \sum_{n=-\infty}^{-1}\operatorname{Res}[f(z), n] + \sum_{n=0}^{\infty} \operatorname{Res}[f(z), n] + \operatorname{Res}[f(z), -1/2].$$
The Laurent series of $f(z)$ at a nonnegative integer is $$ \begin{align} f(z) &= \small \left(\frac{(-1)^n}{z-n} + \mathcal{O}(z-n) \right)\left(\frac{1}{z-n} + H_{n} + \mathcal{O}(z-n) \right) \left(\frac{1}{2n+1} -\frac{2(z-n)}{(2n+1)^{2}} + \mathcal{O}\left((z-n)^{2} \right)\right) \\ &= \frac{(-1)^{n}}{2n+1} \frac{1}{(z-n)^{2}} + \left( \color{red}{\frac{(-1)^{n}H_{n}}{2n+1} -\frac{2 (-1)^{n}}{(2n+1)^{2}} }\right ) \frac{1}{(z+n)}+ \mathcal{O}(1). \end{align}$$
Therefore, at an nonnegative integer $n$, there is a double pole with residue $$\frac{(-1)^{n}H_{n}}{2n+1} -\frac{2 (-1)^{n}}{(2n+1)^{2}}. $$
At $z=-n, n <0$, there is a simple pole with residue $$(-1)^{n+1} \frac{\psi(n)+ \gamma}{2n-1} = (-1)^{n+1} \frac{H_{n-1}}{2n-1}. $$
And at $z= - \frac{1}{2}$, there is a simple pole with residue $$-\frac{\pi}{2} \left( \psi \left(\frac{1}{2}\right)+ \gamma\right) = \pi \ln 2 . \tag{1}$$
Putting everything together, we have
$$\begin{align} 0 &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1} H_{n-1}}{2n-1} + \sum_{n=0}^{\infty} \frac{(-1)^{n}H_{n}}{2n+1} -\sum_{n=0}^{\infty} \frac{2 (-1)^{n}}{(2n+1)^{2}} + \pi \ln 2 \\ &= -\sum_{k=0}^{\infty} \frac{(-1)^{k+1} H_{k}}{2k+1} - \sum_{n=0}^{\infty} \frac{(-1)^{n+1}H_{n}}{2n+1} -2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^{2}} + \pi \ln 2 \\ &= -2 \sum_{n=0}^{\infty}\frac{(-1)^{n+1}H_{n}}{2n+1} - 2 \sum_{n=0}^{\infty} \frac{ (-1)^{n}}{(2n+1)^{2}} + \pi \ln 2 \\ &= -2 \sum_{n=0}^{\infty}\frac{(-1)^{n+1}H_{n}}{2n+1} - 2 G + \pi \ln 2 \\ &= -2 \sum_{n=1}^{\infty}\frac{(-1)^{n+1}H_{n}}{2n+1} - 2 G + \pi \ln 2 \end{align}$$
The result then follows.
$(1)$ Special values $\psi \left(\frac12\right)$ and $\psi \left(\frac13\right)$