A function $f$ is said to be continuous if $\lim\limits_{x \to a} f(x)=f(a)$
Now when we evaluate a function like $\frac{x^2-1}{x-1}$ as $x \to 1$ we find that the limit is 2.
$$\lim\limits_{x \to 1}\frac{x^2-1}{x-1} =\lim\limits_{x \to 1}\frac{(x-1)(x+1)}{(x-1)}=\lim\limits_{x \to 1}(x+1)=2$$
but the function $\frac{x^2-1}{x-1}$ itself is not defined at $x=1$.
Does this mean this function is not continuous at $x=1$?