Problem: Prove that for every odd integer $n$, exist a multiple $m$ of $n$ whose decimal representation entirely consists of odd digits.
My work:
+) For all $n:(n,5)=1$, $10^{\varphi (n)}-1$ works
+) If we can prove the statement for all $5^k$,assume we have $s5^k$ have m digits which are all odd
Then $n=5^kt$,
$\overline{(s5^k)(s5^k)(s5^k)...(s5^k)(s5^k)} \times \frac{10^{\, mn\varphi (n)}\, \, \, \, \, \, \, -1}{10^{\, m\varphi (n)}\,\,\,\, \, \, -1}$ ,($\varphi(n)$ time $s5^k$)
=$\overline{(s5^k)(s5^k)(s5^k)...(s5^k)(s5^k)} \times \overline{1000..0100..0100...001}$, (the 0's has $m\varphi(n)-1$ digit 0)
=$\overline{(s5^k)(s5^k)(s5^k)...(s5^k)(s5^k)}$ works
Because :
+)$\frac{10^{\,\,ab}\,\,\,\,-1}{10^{\,\,b}\,\,\,\,-1}=\overline{100..0100..0100...0100..01}\,\,$ have a digits 1 and the 0's has b-1 digits 0
+) (Every number t has b digit) $\times \frac{10^{\,\,ab}\,\,-1}{10^{\,\,b}-1}\,$= $t \times \overline{100..0100..0100...0100..01}=$ $\overline{ttt...t}$
+)For every $p|n, p\neq 5,$follow LTE:
$v_{p}(\frac{10^{\,\, mn\varphi (n)}\,\,\,\,\,\,\,\, -1}{10^{\,\, m\varphi (n)} \,\,\,\,\,\,-1}\,\,)=v_p(10^{\varphi(n)}-1)+v_p(mn)-v_p(10^{\varphi(n)}-1)-v_p(m)=v_p(n)$
So if we can do with $5^k$,we are done
Someone help me ? Thanks :)