Given the sequence function definition
$$ f(n) :=\sum_{k=1}^{\lfloor n/2\rfloor}F_{n,k}\tag{1} $$
where
$$ F_{n,k} := \dfrac{2^{n-2k}\binom{n-2}{2k-2}
\binom{2k-2}{k-1}}{k}, \tag{2} $$
note that $\,F_{n,k} = T(n\!-\!1,k\!-\!1)\,$ for $\,n\!>\!1\,$ where $\,T\,$ is given in the
OEIS sequence
A091894
whose sequence NAME is
Triangle read by rows: $T(n,k)$ is the number of Dyck paths of semilength $n$, having $k$ ddu's [here $u$ = (1,1) and $d$ = (1,-1)].
and whose first FORMULA entry is
$$ T(n,k) = 2\text{^}(n\!-\!2\!*\!k\!-\!1)\!*\!\text{binomial} (n\!-\!1,2\!*\!k)\!*\!\text{binomial}(2\!*\!k,k)/(k\!+\!1),
\;T(0,0) = 1, \text{ for } 0 <= k <=
\text{floor}((n\!-\!1)/2).$$
The first COMMENT entry includes this:
Row sums are the Catalan numbers (A000108).
More precisely, $\,f(n) = C_{n-1} = \binom{2n-2}{n-1}/n\,$ but how to prove it?
One method uses generating function power series and the
Umbral calculus.
Define the Catalan number generating function
$$ C(x) := \sum_{n=0}^\infty C_n x^n =
\frac{1-\sqrt{1-4x}}{2x}. \tag{3} $$
Define the triangular sequence
$$ U_{n,k} := 2^{n-2k}\binom{n-2}{2k-2}. \tag{4} $$
Note that equations $(1)$, $(2)$ and $(4)$ combine to get
$$ f(n) = \sum_{k=1}^{\lfloor n/2 \rfloor} U_{n,k}\,C_{k-1} \tag{5} $$
and if the recursion equation
(where $n>1$ and with $C_0=1$)
$$ C_{n-1}=\sum_{k=1}^{\lfloor n/2 \rfloor} U_{n,k}\,C_{k-1} \tag{6}$$
is proved then we are done.
The following proof uses Umbral calculus.
Given the formal variable $\,c,\,$ define the formal
power series linear operator
$$ L\!\!\left[\sum_{n=0}^\infty a_nc^n\right] :=
\sum_{n=0}^\infty a_nC_{n-1}. \tag{7} $$
Note that this yields
$$ L\!\!\left[\frac{cx}{1-cx}\right] =
L\!\!\left[\sum_{n=1}^\infty c^nx^n\right] =
\sum_{n=1}^\infty C_{n-1}x^n = x\,C(x). \tag{8} $$
Define the rational expressions
$$ U := (1-2x)\frac{c\,t}{1-c\,t},\quad \text{ where }\quad t:=\frac{x^2}{(1-2x)^2}. \tag{9} $$
The expansion of $\,U\,$ as a power series in $\,x\,$ is
$$ U = (c)x^2 + (2c)x^3 + (4c+c^2)x^4 + (8c+6c^2)x^5 + \dots. \tag{10} $$
Note that this is expressed as the summation
$$ U = \sum_{n=2}^\infty \left(\sum_{k=1}^\infty
U_{n,k}\,c^k\right) x^n \tag{11}$$
which comes from expanding the binomial series
$$ (1\!-\!2x)(c\,t)^{2k} \!=\!
\frac{c^k x^{2k}}{(1\!-\!2x)^{2k-1}}
\!=\! \sum_{n=2k}^\infty c^k 2^{n-2k}
\binom{n-2}{2k-2}x^n. \tag{12}$$
Combine equations $(7)$ and $(11)$ to get
$$ L[U] = \sum_{n=2}^\infty \left(\sum_{k=1}^\infty
U_{n,k}\,C_{k-1}\right)\! x^n. \tag{13} $$
Combine equations $(8)$ and $(9)$ to get
$$ L[U] = (1-2x)\,L\!\!\left[\frac{c\,t}{1-c\,t}\right]
= (1-2x)\,t\,C(t) \tag{14} $$
and with some simple algebra to get
$$ L[U] = \frac{(1-2x)-\sqrt{1-4x}}2 =
x\,C(x)-x. \tag{15} $$
This, combined with equations $(8)$ and $(13)$, proves
equation $(6)$ Q.E.D.